검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 522

        21.
        2023.05 구독 인증기관·개인회원 무료
        According to IAEA PRIS, there is no record of dismantling commercial heavy water reactors among 57 heavy water reactors around the world. In Canada, which has the largest number of heavy water reactors, three of the 22 commercial heavy water reactors with more than 500 MW are permanently suspended, Gentilly unit 2 (2012), Pickering unit 2 (2007), and Pickering unit 3 (2008), all of which chose a delayed decommissioning strategy. On the other hand, Wolsong unit 1, which will be the world’s first heavy water reactor to be dismantled commercially, will be immediately carried out as a decommissioning strategy. KHNP has established various cooperation systems with advanced companies and international organizations related to overseas NPP decommission and is actively exchanging technologies. Among them, the most important focus is on research cooperation related to COG (CANDU owners Group). The first case is a joint study on Conceptual Calandria Segmentation. Four areas of process, waste management, ALARA, and cost for decommissioning reactors to be submitted to Canadian regulators for approval of Pickering and Gentilly-2’s preliminary decommissioning plan have been evaluated, and research on Wolsong unit 1 is currently underway. The second case is Decommissioning and long-term waste management R&D. Although the technical maturity is low, it studies the common interests of member companies in the decommissioning of heavy water reactor power generation companies and long-term waste management. Robotics for dismantling high-radiation structures, C- 14, H-3 measurement and removal methods, and concrete decontamination technology, which are characterized by heavy water, are being actively studied. KHNP is strengthening international cooperation with COG to prepare for the successful decommissioning of Wolsong unit 1. Based on previous studies by Pickering and Gentilly-2, an evaluation of the decommissioning of Wolsong unit 1 reactor is being conducted. In addition, it is preparing for decommissioning through experience analysis of the pressure tube replacement project.
        22.
        2023.05 구독 인증기관·개인회원 무료
        KHNP is carrying out international technical cooperation and joint research projects to decommission Wolsong unit 1 reactor. Construction data of the reactor structures, experience data on the pressure tube replacement projects, and the operation history were reviewed, and the amount of dismantled waste was calculated and waste was classified through activation analysis. By reviewing COG (CANDU owners Group) technical cooperation and experience in refurbishment projects, KHNP’s unique Wolsong unit 1 reactor decommissioning process was established, and basic design of a number of decommissioning equipment was carried out. Based on this, a study is being conducted to estimate the worker dose of dismantling workers. In order to evaluate the dose of external exposure of dismantling workers, detailed preparation and dismantling processes and radiation field evaluation of activated structures are required. The preparation process can be divided into dismantlement of existing facilities that interfere with the reactor dismantling work and construction of various facilities for the dismantlement process. Through process details, the work time, manpower, and location required for each process will be calculated. Radiation field evaluation takes into account changes in the shape of structures by process and calculates millions of areas by process, so integrated scripts are developed and utilized to integrate input text data. If the radiation field evaluation confirms that the radiation risk of workers is high, mutual feedback will be exchanged so that the process can be improved, such as the installation of temporary shields. The results of this study will be used as basic data for the final decommissioning plan for Wolsong unit 1. By reasonably estimating the dose of workers through computer analysis, safety will be the top priority when decommissioning.
        23.
        2023.05 구독 인증기관·개인회원 무료
        Metal waste generated during the dismantling of a nuclear power plant can be contaminated with radionuclides. In general, the internal structure is very complex. Thus, metal waste requires various cutting processes. When metal waste is cut, aerosols are generated. Aerosols are generally various particles of very small size suspended in the working area and remain for a considerable period. This may cause internal exposure of workers due to inhalation of radioactive aerosols generated when cutting radioactive metal waste. This study investigated various cutting processes and the size distribution of aerosols generated during the cutting process. The cutting process is normally classified into thermal cutting, mechanical cutting, and laser cutting. Thermal cutting includes plasma, flame, and oxygen cutting. Mechanical cutting includes mechanical saws, cutters, nibblers, and abrasive water jets. Stainless steel, carbon steel, aluminum, and copper are commonly used as cutting materials in nuclear power plants. The size of the aerosol generated from cutting showed a very diverse distribution depending on the cutting methods and cutting materials. In general, aerosol size is distributed within 0.1-1 μm. This size distribution is different from the 5 μm aerosol size suggested by the ICRP Publication 66 Lung model. These results show that it is necessary to conduct further studies on the size of aerosols generated when decommissioning nuclear power plants.
        24.
        2023.05 구독 인증기관·개인회원 무료
        Since high-level radioactive wastes contain long-lived nuclides and emit high energy, they should be disposed of permanently through a deep geological disposal system. In Korea, the first (2016.07) and the second (2021.12) basic plans for the management of high-level disposal systems were proposed to select sites for deep geological disposal facilities and to implement business strategies. Leading countries such as Finland, Sweden and France have developed and applied safety cases to verify the safety of deep geological disposal systems. By examining the regulatory status of foreign leading countries, we analyze the safety cases ranging from the site selection stage of the deep geological disposal system to the securing of the permanent disposal system to the investigation, analysis, evaluation, design, construction, operation, and closure. Based on this analysis, we will develop safety case elements for long-term safety of deep geological disposal systems suitable for domestic situation. To systemically analyze data based on safety cases, we have established a database of deep geological disposal system regulations in leading foreign countries. Artificial intelligence text mining and data visualization techniques are used to provide database in dashboard form rather than simple lists of data items, which is a limitation of existing methods. This allows regulatory developers to understand information more quickly and intuitively and provide a convenient interface so that anyone can easily access the analyzed data and create meaningful information. Furthermore, based on the accumulated bigdata, the artificial intelligence learns and analyzes the information in the database through deep learning, and aims to derive a more accurate safety case. Based on these technologies, this study analyzed the legal systems, regulatory standards, and cases of major international leading countries and international organizations such as the United States, Sweden, Finland, Canada, Switzerland, and the IAEA to establish a database management system. To establish a safety regulation base suitable for the domestic deep geological disposal environment, the database is provided as data to refer to and apply systematic information management on regulatory standards and regulatory cases of overseas leading countries, and it is expected that it will play a key role as a forum for understanding and discussing the level of safety of deep geological disposal system among stakeholders.
        25.
        2023.05 구독 인증기관·개인회원 무료
        Currently, there are 25 nuclear power plants (NPPs) in operation in Korea, including 22 pressurized water reactors (PWRs) and three pressurized heavy water reactors (PHWRs). Two NPPs, including Kori Unit 1 and Wolsong Unit 1, are permanently shut down and awaiting decommissioning. If Kori Unit 2, which is expected to be permanently shut down soon, is included, the number of decommissioning NPPs will be increased to three. Spent fuels (SFs) are continuously generated during the NPP operation, which are stored in an SF storage pool in NPPs to cool down the decay heat emitted from SFs. For safe NPP operation, SFs must be regarded as waste, and a disposal site must be selected to isolate SFs. However, an appropriate site has yet to be selected in Korea. SFs contain long-lived nuclides with a high specific activity. For disposal, it is important to characterize the nuclides in the fuels and delay the migration of the nuclides to the environment when SFs are placed in a future disposal facility. If the disposal container is broken, the nuclides in the fuels escape from the filling material, such as bentonite. These escaped nuclides are dissolved in groundwater and migrate to the surface of the earth. Thus, it is possible to assess the radiological impact, such as the exposure dose during and after the disposal, if the types and characteristics of nuclides in SFs are known. This study investigated the nuclides in SFs and identified exposure scenarios that may occur in the disposal process of SFs and migration characteristics when the nuclides leak into groundwater to propose a dose assessment methodology for workers and the public.
        33.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the epidemiological characteristics of the antimicrobial resistant Enterococcus isolates from the four major rivers of Korea in 2012. A total 316 surface water samples were collected from three distinct sites (nearby livestock farms, tributaries, and major rivers) at two different seasons (dry season: n = 76, wet season: n = 240). A total 654 bacterial cells were isolated from samples and their genus distribution were determined. We found that Gram-negative bacteria including various genera were prevalent (n = 522, 79.8%), and Enterococcus was the most common genus of Gram-positive bacteria (n = 119, 18.2%). The isolation rate of Gram-negative bacteria was higher in wet season, whereas that of Enterococcus isolates was higher in dry season. The prevalence of Enterococcus isolates was also higher nearby livestock farms than on tributaries and main rivers. Since Enterococcus isolate is a key indicator for animal fecal contamination, the following experiments focused on this microorganism. As compared to a previous report in 2006, the resistance rates in E. faecium to erythromycin (40.0% to 69.9%) and chloramphenicol (0% to 16.4%) were increased, whereas those to penicillin (56.0% to 4.1%) and teicoplanin (36.0% to 0%) were decreased. We also found that antimicrobial-resistant (AMR) E. faecium isolates from rivers and livestock samples shared similar pulsed-filed gel electrophoresis (PFGE) profiles, validating the transmission of AMR Enterococcus isolates from livestock to river. Taken together, this study provides us with detailed information about bacterial contamination status in four major rivers, and highlights the changes in AMR pattern of Enterococcus isolates, which are expected to have originated from livestock.
        4,000원
        34.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A facile and efficient method was developed to prepare highly stretchable and conductive graphene conductors with wrinkled structures by the mechanical stretching and shrinking of elastomeric substrates, in which graphene inks were printed on a prestretched elastomeric substrate. Stretchable and exfoliated graphene inks were prepared by mixing graphite and Ecoflex in a shear-assisted fluid dynamics reactor. The resultant graphene conductor exhibited excellent stretchability at 150% strain and high electrical conductivity of 64 ± 1.2 S m− 1. The resistance of the conductor did not change in bent, twisted, and stretched states. The resistance did not change during 10,000 cycles of stretching/releasing, with a maximum strain of 150%. Based on the graphene conductor, a stretchable conductometric sensor with a two-electrode configuration was fabricated to measure impedance changes at different concentrations of electrolyte ions. This sensor exhibited a good and linear sensitivity curve (298.61 Ω mM− 1, R2 = 0.999) in bent and stretched states.
        4,000원
        35.
        2022.10 구독 인증기관·개인회원 무료
        The number of dismantled nuclear facilities is increasing globally. Dismantling of nuclear facilities generates large amount of waste such as concrete, soil, and metal. Concrete waste accounts for 70% of the total amount of waste. Since hundreds of thousansds of tons of concrete waste generated, securing technology of reduction and recycling of waste is emerging as a very important issue. The objective of this study is to synthesize geopolymer using inorganic materials from cement fine powder in concrete waste. Dismantled concrete waste contains a large amount of calcium silicate hydrate(C-S-H), Ca(OH)2, SiO2, etc., which is an inorganic material required for the synthesis of geopolymer. SiO2 affects the compressive strength of the geopolymer and Ca(OH)2 affects the curing rate. A high concentration of alkali solution is used as an alkali activator, and alkali activator is necessary for the polymerzation reaction of metakaolinite. The experiment consists of three steps. The first step is to react with concrete waste and hydrochloric acid to extract ions. In the solid after filtration, SiO2 and Al2O3 are composed of 84.10%. It can be used instead of commercial SiO2 required for the synthesis of geopolymer. The second step is to add NaOH up to pH 10, impurities can be removed to extract Ca(OH)2 with high purity. The final step is to add NaOH up to pH 13, and Ca(OH)2 extraction. The alkali solution generated after the last reaction can be recycled into an alkali activator during the synthesis of the geopolymer. If dismantled concrete waste is recycled during geopolymer synthesized, the volume reduction rate of dismantled concrete waste is more than 50%. If you put the radioactive waste in the recycled solidification materials synthesis from concrete waste by dismantling of nuclear facilities, it is possible to reduce the amount of waste generated and disposal costs.
        40.
        2022.10 구독 인증기관·개인회원 무료
        CYPRUS is a web-based waste disposal research comprehensive information management program developed by the Korea Atomic Energy Research Institute over three years from 2004. This program is stored as existing quality assurance documents and data, and the research results can be viewed at any time. In addition, it helps to perform all series of tasks related to the safety evaluation study of the repository in accordance with the quality assurance system. In the future, it is necessary to improve the user convenience by clarifying the relationship between FEP and scenarios and upgrading output functions such as visualization and automatic report generation. This purpose of this study is to research and develop the advanced program of CYPRUS. This study is based on building FEP, DIM and scenario databases. It is necessary to develop an algorithm to analyze and visualize the FEP, DIM and scenario relationship. This project is an integrated information processing platform for DB management and visualization considering user convenience. The first development goal is to build long-term evolutionary FEP, DIM, and scenarios as a database. The linkage by FEP item was designed in consideration of convenience by using a mixed delimiter of letters and numbers. This design provides information on detailed interactions and impacts between FEP items. Scenario data lists a series of events and characteristic change information for performance evaluation in chronological order. In addition, it includes information on FEP occurrence and mutual nutrition by period, and information on whether or not the repository performance is satisfied by item. The second development goal is to realize the relationship analysis and visualization function of FEP and scenario based on network analysis technique. Based on DIM, this function analyzes and visualizes interactions between FEPs in the same way as PID, RES, etc. In addition, this function analyzes FEP and DIM using network analysis technique and visualizes it as a diagram. The developed platform will be used to construct and visualize the FEP DB covering research results in various disposal research fields, to analyze and visualize the relationship between core FEP and scenarios, and finally to construct scenarios and calculation cases that are the evaluation target of the comprehensive performance evaluation model. In addition, it is expected to support the knowledge exchange of experts based on the FEP and scenario integrated information processing platform, and to utilize the platform itself as a part of the knowledge transfer system for knowledge preservation.
        1 2 3 4 5