검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,131

        41.
        2023.07 구독 인증기관·개인회원 무료
        The spread of COVID-19 changes consumer preferences and behaviors greatly across the world. Extant literature has demonstrated that when there is a threat to disease, people stay away from those who do not seem healthy as they can be potentially infectious. Based on the previous literature, this research shows that individuals exposed to disease threat avoid products of which designs are high in visual complexity. When disease threat was present, individuals had lower purchase intention for products with complex designs. The perceived uncleanliness mediated the effect of visual complexity and disease threat on purchase intention. The findings provide a novel insight into the effect of disease salience on consumer perception of product design.
        42.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Animal and Plant Quarantine Agency conducts a targeted sampling plan and analysis for veterinary drugs within the country every year. Target compounds included tetrachlorvinphos as an organophosphate, diminazene as an anti-infective medication, ketoprofen as a nonsteroidal anti-inflammatory drug, triclabendazole and clorsulon as flukicides in 2022. These compounds were not included in National Residues Program (NRP), despite their high sales ranking. A total of 94 bovine muscle samples and 20 equine muscle samples were collected from various locations across the country. The analysis of target compounds in muscle was performed using LC-MS/MS coupled with Food code 8.3.1 revised in 2022. A 2 g sample of muscle tissue was extracted using a water: acetonitrile (1:4, v/v) solution, then cleaned up with C18 and hexane saturated with acetonitrile. Compounds were separated with C18 column and mobile phases consisted of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). All analytes exhibited good linearity with correlation coefficients (R2) higher than 0.992. The limit of quantification (LOQ) of these compounds ranged from 0.21 to 2.79 μg/kg except for diminazene (3.85~6.86 μg/kg). The average recoveries of these analytes were 89.45~129.13% in muscle at spiked level of 10 or 20 μg/kg. Relative standard deviations (%) (intra-day and inter-day) were lower than 20% for all target compounds, except for diminazene and triclabendazole, whose intra-day RSD % was slightly higher than 20% in equine muscle. Testing confirmed that all 94 bovine and 20 equine muscle samples from 9 provinces were free from residues of veterinary drugs. Monitoring of compounds not included in the NRP should continue to ensure consumer health and food safety.
        4,000원
        43.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Babesiosis is a tick-borne disease caused by intraerythrocytic protozoa. Despite the increasing acknowledgement that babesiosis represents a threat to animal and human health, to date there have been few studies focusing on the disease in the Republic of Korea (ROK). In the present study, we report a Babesia capreoli infection in an Ixodes nipponensis tick obtained from a Korean water deer (Hydropotes inermis argyropus). The tick was identified with polymerase chain reaction analysis as I. nipponensis (Japanese hard tick). A phylogenetic analysis based on the 18S rRNA gene sequences revealed that the isolate found in I. nipponensis belonged to the B. capreoli lineage and was distinct from the Asian, European, and North American lineages of Babesia divergens. Although our isolate belonged to the B. capreoli lineage it did not form a cluster with others isolates in the same lineage; this may be due to differences in the tick species that transmit B. capreoli or in the host species. We were unable to identify the reservoir host for our case of B. capreoli transmission, though regional ticks may be the primary vector. This study confirms the presence of B. capreoli in the ROK, and its presence suggests that further study is warranted to determine its prevalence and pathogenicity in wild and domesticated animals.
        4,000원
        44.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Macrophages secrete various cytokines and inflammatory mediators, resulting in playing critical roles in inflammation and immunity. In this study, we investigated anti-inflammatory and immune enhancing properties of PB203, which is a water-soluble extract powder from the fruit of Actinidia polygama, in macrophages. A. polygama is a medicinal plant traditionally known to treat abdominal pain, stroke and rheumatoid arthritis. However, the molecular mechanism for the immune modulation of PB203 is still unclear. Therefore, we assessed the effects of PB203 on the lipopolysaccharide (LPS)-induced inflammation and immune activation, and elucidated its action mechanism in mouse macrophage, RAW264.7 cells. PB203 significantly suppressed not only the levels of nitric oxide (NO), prostaglandin E2, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), but also the mRNA expression of inducible NO synthase, cyclooxygenase-2, TNF-α and IL-1β in LPS-stimulated RAW264.7 cells. We also found that these anti-inflammatory activities of PB203 were mediated through the inhibition of toll-like receptor 4 and nuclear factor kappa B (NF-κB) induced by LPS. On the other hand, in normal macrophages, PB203 dose-dependently elevated the gene expression of immunomodulators including granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, monocyte chemoattractant protein-1 and TNF-α in a statistically significant manner. The expression of IL-10, IL-1β, IL-6, and interferon-γ were also remarkably upregulated by the treatment of 500 μg/mL PB203. In addition, PB203-mediated production of NO and TNF-α was attenuated by NF-κB inhibition in RAW264.7 cells. Interestingly, PB203 promoted the production of nuclear factor erythroid-2-related factor 2, resulting in the increased level of heme oxygenase-1, which is a representative antioxidant enzyme, in both LPS-stimulated and normal RAW264.7 cells. Taken all together, these results suggest that PB203 may have great potential as the candidate of anti-inflammatory agent for improving inflammatory diseases or immune enhancing agent for preventing infectious diseases. Keywords: Actinidia polygama extract (PB203); macrophages; immunomodulator; nuclear factor kappa B (NF-κB); heme oxygenase-1 (HO-1)
        5,200원
        52.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polymeric carbon nitride (p-C3N4) is a promising platform as a metal-free photo-catalyst for various reactions. The p-C3N4 can be produced by thermal poly-condensation of organic precursors. Their morphological and chemical structures depend on reaction conditions during the poly-condensation. In this study, two p-C3N4 materials are produced by heat treatment of urea under different gaseous conditions with air (urea-derived carbon nitride under air, UCN-A) and N2 (UCN-N), respectively. UCN-A and UCN-N samples are mesoporous materials and show excellent photocatalytic activities for degrading rhodamine B, an organic pollutant, under the irradiation of visible light. The UCN-A shows the better photocatalytic activity than UCN-N. Various characterizations reveal that more porous structures and larger surface areas of UCN-A are reasons for the better photocatalytic performance.
        4,000원
        53.
        2023.05 구독 인증기관·개인회원 무료
        Molten salt is one of the promising medium materials for molten salt reactors and energy storage systems. Molten salt is advantageous for better physical properties such as low melting point and high boiling point, high energy capacity, high thermal conductivity, and high thermal stability than other medium materials such as water or liquid metals. However, the corrosivity of the molten salt is one of the main factors that disturbs the various applications of the molten salt. On the other hand, metallic 3-D printing technologies have developed by leaps and bounds over the past 20 years and show potential for use in cutting-edge industries such as aerospace and military purposes. However, the biggest problem of 3-D printed products is that the mechanical and physical properties are very weak along the laminated plane that was generated during the manufacturing process. In particular, other research showed that corrosion is vulnerable through the laminated surface, and corrosion along the laminated plane is not completely mitigated through a general heat treatment process although the microstructure of the surface is evaluated to be partially mitigated by the heat treatment. In this study, molten salt corrosion behaviors of simple Ni-based alloy with a composition of 80Ni- 20Cr were analyzed. Ni-based alloys were fabricated by casting and 3-D printing, and some of the 3-D printed specimens were thermally treated at 1,273 K for 1 hour to examine the effects of heat treatment on corrosion behaviors. In molten eutectic NaCl-MgCl2 melts at 973 K, Ni-based alloys were corroded for 1, 3, 7, and 28 days and their microstructural changes were analyzed by SEM-EBSD-EDS and OM. The corrosion behaviors of the alloy were also evaluated by the salt composition measured with ICPOES. 3-D printed alloy with post-treatment showed more resistivity to the molten salt corrosion than as-fabricated 3-D printed alloy. However, the corrosion rate of the 3-D printed specimen after heat treatment was still higher than that made by casting.
        54.
        2023.05 구독 인증기관·개인회원 무료
        A molten salt reactor (MSR) is a conceptual nuclear reactor that uses molten salt with liquid fuel as its primary coolant. Based on the thermophysical and neutronic properties, MSR has advantages such as high efficiency, safety, combustion of transuranic (TRU) elements, and availability of miniaturization and on-power refueling. Various research on MSR such as system development, neutronic analysis, material development, and molten salt property analysis has been conducted, but the biggest problem is the molten salt corrosion. The molten salt corrosion on structural materials can be explained by two processes; electrochemical and chemical reactions. The reduction of oxidative ions such as fuel and TRU elements is one of the major causes of molten salt corrosion. Contamination by humidity and oxygen is also known as the accelerating factor of molten salt corrosion. Also, molten salt corrosion behaviors on structural material deteriorate when dissimilar alloys are introduced in the molten salt system. Various techniques to mitigate molten salt corrosion in fluoride system has been developed, but these are not well-verified in chloride system. In this research, various methodologies to mitigate molten salt corrosion are studied. The corrosion behaviors of 80Ni-20Cr alloy in molten eutectic NaCl-MgCl2 salt at 973 K are analyzed with various applications such as salt purification, sacrificial metal injection, and salt redox potential control. Oxygen and water impurities that can accelerate molten salt corrosion have been removed by electrochemical and chemical methods; Applying the reduction potential for H+/H2 and oxidation potential for O2-/O2, introducing HCl and CCl4 gas, and introducing the metallic Cr and recovering the ionized Cr. Corrosion acceleration/deceleration effects were analyzed when introducing the reducing reagent such as Mg and Nb or oxidizing reagent such as metallic Mo and the effect of inert metallic element (W) was also investigated. The salt potential was controlled by applying the potential to the salt and adjusting the Eu3+/Eu2+ ratio.
        55.
        2023.05 구독 인증기관·개인회원 무료
        Low- and intermediate-level radioactive waste for permanent disposal often contains organic complexing agents, so-called chelating agents. Organic complexing agents, which are polycarboxylic acids, can increase the mobility of radionuclides into the environment by forming water-soluble complexes with most heavy metals. Therefore, analyzing the complexing agents in radioactive waste is crucial for comprehensive management of nuclear wastes. According to regulatory guidelines, specifically Notice No. 2021-16 issued by the Nuclear Safety and Security Commission, the determination of chelating agent content in radioactive waste materials is required to ensure proper management and safe disposal. However, only a few methods are available to analyze the chelators in various matrices such as concrete, metals, soil, and mixed solid wastes like plastics, vinyl, and rubber. Recently, we found a UV-Vis method based on an enzymatic reaction is inadequate for analyzing citric acid in radioactive waste with a complex matrix like concrete. To address this, we developed a method to determine the contents of EDTA and NTA using a UV-Vis spectrophotometer and citric acid using ion chromatography. The results showed good validity and reliability to determine the chelating agents in various radioactive wastes.
        56.
        2023.05 구독 인증기관·개인회원 무료
        For decontamination and quantification of trace amount of tritium in water, an efficient separation technology capable of enriching tritium in water is required. Electrolysis is a key technology for tritium enichment as it has a high H/T and D/T separation factors. To separate tritium, it is important to develop a proton exchange membrane (PEM) electrolyzer having high hydrogen isotope separation factor as well as high electrolyzer cell efficiency. However, there has not been sufficient research on the separation factor and cell efficiency according to the composition and manufacturing method of the membrane electrode assembly (MEA) Therefore, it is necessary to study the optimal composition and manufacturing method of the MEA in PEM electrolyzer. In this study, the H/D separation factor and water electrolysis cell efficiency of PEM electrolyzer were analyzed by changing the anode and cathode materials and electrode deposition method of the MEA. After the water electrolysis experiment using deionized water, the D/H ratio in water and hydrogen gas was measured using a cavity ring down spectrometer and a mass spectrometer, respectively, and the separation factor was calculated. To calculate the cell efficiency of water electrolysis, a polarization curves were obtained by measuring the voltage changes while increasing the current density. As a result of the study, the water electrolyzer cell efficiency of the MEA fabricated with different anode/cathode configurations and electrode formation methods was higher than that of commercial MEA. On the other hand, the difference in H/D separation factor was not significant depending on the MEA fabrication methods. Therefore, using a cell with high cell efficiency when the separation factor is the same will help construct a more efficient water electrolysis system by lowering the voltage required for water electrolysis.
        57.
        2023.05 구독 인증기관·개인회원 무료
        During the decommissioning of a nuclear power plant, the structures must be dismantled to a disposal size. Thermal cutting methods are used to reduce metal structures to a disposal size. When metal is cut using thermal cutting methods, aerosols of 1 μm or less are generated. To protect workers from aerosols in the work environment during cutting, it is necessary to understand the characteristics of the aerosols generated during the cutting process. In this study, changes in aerosol characteristics in the working environment were observed during metal thermal cutting. The cutting was done using the plasma arc cutting method. To simulate the aerosols generated during metal cutting in the decommissioning of a nuclear power plant, a non-radioactive stainless steel plate with a thickness of 20 mm was cut. The cutting condition was set to plasma current: 80 A cutting speed: 100 mm/min. The aerosols generated during cutting were measured using a highresolution aerosol measurement device called HR-ELPI+ (Dekati®). The HR-ELPI+ is an instrument that can measure the range of aerodynamic diameter from 0.006 μm to 10 μm divided into 500 channels. Using the HR-ELPI+, the number concentration of aerosols generated during the cutting process was measured in real-time. We measured the aerosols generated during cutting at regular intervals from the beginning of cutting. The analyzed aerosol concentration increased almost 10 times, from 5.22×106 [1/cm3] at the start of cutting to 6.03×107 [1/cm3] at the end. To investigate the characteristics of the distribution, we calculated the Count Median Aerodynamic Diameter (CMAD), which showed that the overall diameter of the aerosol increased from 0.0848 μm at the start of cutting to 0.1247 μm at the end of the cutting. The calculation results were compared with the concentration by diameter over time. During the cutting process, particles with a diameter of 0.06 μm or smaller were continuously measured. In comparison, particles with a diameter of 0.2 μm or larger were found to increase in concentration after a certain time following the start of cutting. In addition, when the aerosol was measured after the cutting process had ended, particles with a diameter of 0.06 μm or less, which were measured during cutting, were hardly detected. These results show that the nucleation-sized aerosols are generated during the cutting process, which can explain the measurement of small particles at the beginning of cutting. In addition, it can be speculated that the generated aerosols undergo a process of growth by contact with the atmosphere. This study presents the results of real-time aerosol analysis during the plasma arc cutting of stainless steel. This study shows the generation of nucleation-sized particles at the beginning of the cutting process and the subsequent increase in the aerosol particle size over time at the worksite. The analysis results can characterize the size of aerosol particles that workers may inhale during the dismantling of nuclear power plants.
        58.
        2023.05 구독 인증기관·개인회원 무료
        Several tests should be performed to estimate the structural and chemical stability of the radioactive waste. Among the tests in Gyeongju LILW repository, the leaching test which follows ANS 16.1 standard test method should be conducted for Cs, Sr, and Co radionuclides and must satisfy leachability index larger than 6 which applies deionized water as a leachant. However, the expected leachant inside the silo is groundwater that contains various ions and a high pH condition is predicted due to the concrete structures inside the silo. According to the chemical environment of the leachant, the chemical form of the radionuclides varies from precipitate to ion. Cobalt precipitates when the leachant has high pH environment which is similar condition to the cement-saturated leachant. Unlike the cobalt, cesium is preferred to exist as ion in the high pH condition. Therefore, the significant effect of the chemical environment of the leachant on the leachability of the radionuclides should be considered for the waste acceptance criteria of the radioactive waste repository. From the ‘NRC, Technical position on the waste form, rev1’, the leaching test method should follow the ANS 16.1 methods by using deionized water as leachant, however, a new leachant showing more aggressive leachability can be applied instead of deionized water. In the other hand, ASTM C1308 leaching test method recommends applying actual groundwater of the repository as a leachant. FT-04-020, the leaching test method of France, suggests the ion composition of the groundwater including the pH value. Therefore, the adequacy of using deionized water as leachant for the leaching test method of Cs, Sr, and Co should be re-examined. In this study, the leaching behavior of Cs, Sr, and Co under the several leachant types is estimated. The cement solidified specimen containing single Cs, Sr, and Co were manufactured. The leaching test following ANS 16.1 was performed by applying deionized water, simulated groundater, and cement-saturated groundwater. As a result, a leachability index difference according to the leachant type was discussed. The result of this study is expected to be a background data that helps understanding the actual leaching behavior of the Cs, Sr, and Co in the Gyeongju LILW repository.
        59.
        2023.05 구독 인증기관·개인회원 무료
        To prevent the release of radionuclides into the biosphere, disposal facilities for radioactive waste should be located to provide isolation from the accessible biosphere for tens of thousands to a million years after closure. During the period of interest, the constantly evolving natural environment and possible geological events of the site can cause disturbances to the containment function of the repository. Thus, for the long-term safety assessment of the repository, the possible long-term change of natural barrier should be considered. Due to the characteristics of radionuclides that transport mainly through the groundwater, understanding the long-term evolution of groundwater flow and geochemical properties is essential to assess the long-term changes in the natural barrier performance. The changes in characteristics of natural rocks and geological structures are one of the main factors that determine the hydrological and geochemical characteristics of the deep underground. In this study, we plan to develop a methodology to estimate these future geological evolutions in order to assess the possibility of hazardous events of the site that can affect hydrological or geochemical properties over the period of interest, and also in order to verify the change in the geological environment is within the safe performance range even after the period of interest. However, it is very unreliable to predict future changes in the natural environment because it is very heterogeneous, complex, and difficult to observe directly. For the preliminary study of the project, we reviewed cases of future evolution prediction researches with regard to the geological environment of disposal site and methods they applied to reduce the uncertainty of the prediction. The results will be used to establish basic data for future studies on the long-term evolution of hydraulic-mechanics performance of natural barrier and long-term evolution of geochemical performance around KURT site. In addition, it can contribute to construct long-term evolution scenario of the geological environment around future URL site.
        60.
        2023.05 구독 인증기관·개인회원 무료
        A radioactive waste repository consists of engineered barriers and natural barriers and must be safely managed after isolation. Geologic events in natural barriers should be categorized and evaluated according to their magnitude to assess the present and future stability of disposal. Among the longterm evolutionary elements of natural barriers, faults are a small portion of the Earth’s crust. Still, they play an important role in nuclide transport as conduits for fluids moving deep underground. In addition, the physical and chemical properties of fault rocks are useful for understanding the longterm and short-term behavior of faults. Paleomagnetic research has been used extensively and successfully for igneous, metamorphic, and sedimentary rocks. In addition, magnetic characterization of fault rocks can be used to describe faults or infer the timing of major geological events along fault zones. Components of magnetization defined in fault-breccias were attributed to chemical processes associated with hydrothermal mineralization that accompanied or post-dated tectonic activity along the fault. The study of magnetic minerals in fault rocks can be used as “strain indicators”, “geothermometers”, etc. This study is a preliminary test of magnetic properties using fault gouges. Fault gouges are not well preserved in typical terrestrial environments. Access to fresh gouges typically requires trenching through faults or sampling with a core drill. Fortunately, it is a magnetic property study using a fault gouge that exists on the inner wall of KURT (KAERI Underground Research Tunnel). This is to identify the motion history of the fault and, furthermore, to understand the stress structure at the time of fault creation. In addition, it can be presented as evidence for evaluating faults that may appear in future URL (Underground Research Laboratory).
        1 2 3 4 5