검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 85

        77.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        The objective of this study was to determine the role of storing years with the variation of total phenol and individual phenolic compounds in soybean (Glycine max L.) seeds. The total phenol content varied from 0.36 to 0.42% over four years, with the highest value (0.42%) found at storage for two and three years. Among the nine soybean varieties examined, Daweonkong had the highest total average phenol content (0.58%). The total content of 11 phenolics varied from 730.0 to 1812.8 ~mu~textrmg~;~textrmg-1 over storage for four years, and the highest concentration (1812.8 ~mu~textrmg~;~textrmg-1 ) was found at storage for two years. Myeongjunamulkong (1465.4 ~mu~textrmg~;~textrmg-1 ) had the highest mean content among the nine soybean varieties. The total content of 11 phenolic compounds measured in this study occupied from 20.96 to 47.73% of the total phenol contents. The highest total phenol contents were in seeds with black coats (5279.4 ~mu~textrmg~;~textrmg-1 ), while the highest concentration of individual phenolic compounds were in seeds with green coats (1419.5 ~mu~textrmg~;~textrmg-1 ). Our study suggests that it may be feasible to improve soybean varieties with high functional substances such as phenolic compounds.
        78.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        Effects of ambient and elevated ~textrmCO2 and high temperature, and their interactions with zero and applied nitrogen supply (NN-no nitrogen and AN-applied nitrogen) were studied on soybean (Glycine max L.) in 2001. In this experiment, elevated ~textrmCO2 (650 ~mu~textrmmol.~textrmmol-1 ) and temperature (+5~circ ) increased total dry mass at final harvest by 125% and 119% and seed weight per plant by 57% and 105% for NN and AN plants, respectively. Although the influence of temperature and temperature x ~textrmCO2 were not significant, the influences of ~textrmCO2 concentration and temperature x ~textrmCO2 concentration were significant on total dry weight and seed weight, respectively. In particular, seed weight per plant was increased, while weight per one hundred seed weight was decreased with elevated ~textrmCO2 and temperature. The N supply increased biomass and seed weight per soybean plants. The results of this study suggest that the long-term adaptation of soybean growth at an elevated ~textrmCO2 concentration and high temperature might potentially result in a increase in dry matter production and yield.
        1 2 3 4 5