검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 725

        90.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Minuartia laricina (L.) Mattf. is a Korean native plant with high potential as a commercial flowering potted plant due to its compactness and long flowering duration. However, because this plant is a groundcover, it is susceptible to lodging and leggy growth. Therefore, this study investigated the effects of plant growth retardants (PGRs) on the inhibition of stem elongation and flowering characteristics of M. laricina. Commercial products, Trimmit, Cycocel, and B-Nine, were used for the exogenous PGR application of paclobutrazol (PBZ), chlormequat chloride (CCC), and daminozide (DMZ), respectively. Application concentrations were 50 and 100 mg·L-1 for PBZ; 100, 500, and 1,000 mg・L-1 for CCC; and 500, 1,000, and 2,000 mg·L-1 for DMZ. Paclobutrazol was the only PGR that inhibited stem elongation. The stem lengths of the plants treated with 50 or 100 mg·L-1 PBZ were 2.2 cm (13%) or 9.8 cm (57%) shorter, respectively, than those of the control. 50 mg·L-1 PBZ retarded stem growth effectively without negatively affecting flowering or other growth parameters, whereas 100 mg·L-1 PBZ caused excessive dwarfing and significantly reduced flowering by 59%. CCC and DMZ applications were ineffective for growth control. Flowering time was accelerated with most PGRs, except for 2,000 mg·L-1 DMZ, reducing the time to flowering by 2–8 days. These results indicate that the stem growth of M. laricina was successfully inhibited with PBZ but not with CCC or DMZ. Thus, we concluded that a single application of 50 mg·L-1 PBZ or similar treatment is effective in miniaturizing M. laricina without causing harm to its growth or aesthetic value, such as the flower number. Additionally, because CCC and DMZ are not persistent in the growing medium, testing multiple application times for these PGRs is crucial.
        4,000원
        91.
        2022.09 구독 인증기관·개인회원 무료
        Sustainable capacity building of the rice value chain in Africa is essential in achieving the rice self-sufficiency and poverty alleviation. The breeding capacity enhancement has also been at the heart of AfricaRice’s mandate. Therefore, the Korea-Africa Food and Agriculture Cooperation Initiative (KAFACI) has concentrated breeding capacity enhancement for young breeders or breeding technicians of national research institutes in the KAFACI member countries. Four-month trainings have been conducted at the Regional Training Center located in Saint Louis, Senegal. The actual practice training is as follows; First is to learn practical skills and techniques of key aspects of rice breeding which are field preparation and layout, sowing, transplanting, fertilizer application, weed control, water management, hybridization/crossing, selection, yield and yield components determination, and rice palatability testing. Second is to learn some theoretical aspects of plant breeding through lectures including basic principles of breeding, evaluation for biotic and abiotic stresses, and statistical analysis. Third is to learn about the accurate use of field and lab equipment for rice breeding. Forth is to learn about proper scientific reporting and presentation. The courses were organized twice per year following two rice cultivation seasons in Senegal. From 2019, a total of 24 trainees participated in the 4 month courses. We believe they have acquired the basic knowledge and skills to implement rice breeding activities indpendently in their countries.
        92.
        2022.09 구독 인증기관·개인회원 무료
        The Korea-Africa Food and Agriculture Cooperation Initiative (KAFACI) has been cooperating with AfricaRice since 2014 for the eradication of hunger and poverty in Africa through sustainable agriculture and its industrialization. At first, rice breeding activities for staple food production started with KAFACI member countries by sharing high-yielding Tongil-type rice breeding lines and varieties. The Africa Rice Development Partnership project entitled “Enhancement of high-yielding rice germplasm and breeding capacity of rice producing countries in Africa” is implemented for the period from 2016 to 2025 with three phases. The actual rice breeding activities have been conducted by applying anther culture haploid breeding technology in the laboratory and field of AfricaRice Saint-Louis center. The 1,547 elite lines selected through participatory variety selection were distributed to 21 national breeders of KAFACI member countries. These lines derived from the 1,181 cross combination and 34,616 breeding lines on Korea and AfricaRice germplasm crossed. Among them 11 new Tongil-type rice varieties have been selected and registered in the national variety catalogue of Senegal, Mali, Rwanda, Malawi, and Tanzania.
        93.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the preparation of activated carbon fiber derived from waste cotton fabric for economical and ecofriendly recycling as well as its application to water purification. The activated carbon fiber was prepared by physical activation using steam and the adsorption property was then evaluated using methylene blue. When the activation temperature increased, the specific surface area and mesopore volume of the activated carbon fiber increased up to 2562 m2/ g and 0.214 cm3/ g, resulting in the increased adsorption of methylene blue. The results of the adsorption experiment for the activated carbon fiber were analyzed using the Langmuir and Freundlich equations. The Langmuir equation was more suitable than the Freundlich equation to explain the adsorption equilibrium. The maximum adsorption amount of methylene blue was 161.1–731.5 mg/g for fiber samples activated at temperatures ranging from 750 to 950 °C with sample labeled 750SA to 900SA according to the Langmuir equation. The kinetics of methylene blue adsorption by the activated carbon fiber were analyzed using non-linear pseudo-first-order and pseudo-second-order. Sample 750SA was suitable for the pseudo-first-order and 800SA, 850SA, and 900SA sample were suitable for the pseudo-second-order. Therefore, waste cotton fabric has the potential to be the precursor for activated carbon fiber with excellent adsorption properties.
        4,500원
        94.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Under anoxic conditions, this study investigated removal of dissolved As(III) by Si and Al oxides including natural sand, chemically washed sand (silica), alumina, and activated alumina. Despite the similar surface area, natural sand showed greater extents of As(III) sorption than chemically washed sand. This was likely due to the high reactivity of Fe(oxyhydr)oxide impurities on the surface of natural sand. For both sands, As(III) sorption was the greatest at pH 7.1, in agreement with the weakly dissociating tendency of arsenous acid. Also, the least sorption was observed at pH 9.6. At basic pH, elevated silicate, which originated from the dissolution of silica in sands, would compete with As(III) for sorption. Due to the highest surface area, activated alumina was found to quantitatively immobilize the initially added As(III) (6.0×10−7 -2.0×10−5 M). Alumina showed As(III) sorption compared to or greater than chemically washed sand, although the former had less than 6% of the surface of area the latter. The greater reactivity of alumina than chemically washed sand can be explained by using the shared charge of oxygen.
        4,000원
        95.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iris laevigata, which belongs to the Iridaceae, is now designated as an “endangered” (EN) grade by Korea Forest Service because it does not have many natural sites known for its reckless development and damage to its natural habitats. This study was carried out to establish the propagation protocol from seed to restore the native habitat of the I. laevigata and to utilize it for ornamental purposes. Basically, the appearance and internal structure of seeds were observed and imbibition experiments were conducted. Germination rate was measured by cold stratification experiment, after warm followed by cold stratification experiment, and GA3 treatment experiment. The seeds had underdeveloped embryos, which had grown to about 25% of those of fully matured seed before germination. In the controlled laboratory experiment, after cold stratification at 5°C for 0, 4, 8, or 12 weeks, the seeds germinated to 0, 11.7, 43.4, or 51.7%, respectively, after 4 weeks of incubation at 25°C. After warm stratification (25°C, 8 weeks) followed by cold stratification for 0, 4, 8, or 12 weeks, the seeds germinated to 0, 51.7, 85.0, or 88.3%, respectively, after 4 weeks of incubation at 25°C. GA3 treatment did not overcome the dormancy. Our study determined the dormancy type of I. laevigata seed. Imbibition experiments showed that there was no physical dormancy, and it was also found that there was an underdeveloped embryo when it was observed that the embryo was growing according to the period of incubation. A nd t he e m bryo grew a t relatively w arm temperatures. It is concluded that the seeds of I. laevigata have morphophysiological dormancy (deep simple MPD). This is the first report to determine the dormancy type in seeds of this valuable ornamental plant.
        4,000원
        96.
        2022.05 구독 인증기관·개인회원 무료
        The lattice thermal expansion of zirconium-based samples containing tin, niobium, and iron elements at a temperature range of 30–870°C with intervals of 40°C was studied by in situ hightemperature X-ray diffraction (HT-XRD). The a- and c-axes lattice constants of the hexagonal Zr crystal structure for the zirconium-based samples were calculated by Pawley refinement using the in situ HT-XRD spectra. The a-axis lattice parameters for the zirconium-based samples with tin element overall decreased, whereas those for the samples containing niobium or iron elements are not declined, as compared to those for a pure zirconium sample. It suggests that the lattice thermal expansion along the a-axis direction of the hexagonal Zr crystal structure for zirconium-based samples was suppressed by the tin element. This effect is the greatest when the content of tin element added in zirconiumbased sample is 3wt%. On the other hand, the c-axis lattice parameters for all the zirconium-based samples overall increase as compared to the pure zirconium, indicating no suppression effect by tin, niobium, and iron elements, in contrast to the a-axis lattice constants.
        97.
        2022.05 구독 인증기관·개인회원 무료
        Forest fires produce various particulate organic matters (POMs) derived from the incomplete combution process of biomass. The POMs deposited in soil and sediments can affect the physicochemical properties of the subsurface environments. This study investigated the sorption and transport behavior of cesium (Cs) in soil-groundwater environment after wildfire. Soil samples were collected at two locations (GS1 & GS2) in Gangwon Province, Korea, at different depths (~5, ~20, and ~40 cm). The sampling site, where a large-scale forest fire occurred in 2017, was damaged almost 252 ha of forest. The soil characteristics were determined by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), total organic carbon (TOC) analysis and organic petrography, and batch and fixed-bed column experiments were performed to evaluate the Cs uptake and retardation. The XRD patterns of the soils indicated that the mineral compositions of soils were quartz, feldspars (e.g., orthoclase & albite) with minor muscovite/illite. Quartz and feldspars were abundant in all studied soils, and GS2 sample contained higher feldspars and phyllosilicate minerals than the GS1. The TOC contents were high (7–8wt%) in the topsoils, decreasing with depth. The SEM and organic petrographic analyses showed that various organic carbon particles such as textinite, ulminite, fusinite (charcoal) and char existed. Presence of charcoal and char is the evidence of wildfires, even though their amount was few. Batch sorption experiments revealed that the Kd value decreased non-linearly as the Cs concentrations increased, and the sorption isotherms were fitted well with the Freundlich model. The Kd values of each soil were much greater in topsoils compared to subsoils at all experimental Cs concentrations. In particular, the GS1 topsoil had higher sorption capacity for cesium than GS2 subsoils, although it had low phyllosilicate mineral contents with realtively rich organic matter. The breakthrough curve of column experiments with high concentration (C0 ≈ 1×105 μg·L−1) also exhibited remarkable Cs retardation phenomena in topsoils. Their retardation factors (Rf,Cs) were max. 4 times greater than those of subsoils, showing Rf,Cs ≈ 43 to 45 for topsoils. At low concentration (C0 ≈ 1×104 μg·L−1), the Rf,Cs of topsoils (≈ 284 to 374) was slightly greater than that of subsoils (≈ 270 to 271). These results imply that POMs caused by wildfires can play important role on the Cs sorption and transport in the subsurface environments.
        98.
        2022.05 구독 인증기관·개인회원 무료
        Currently, dismantling technology for decommissioning nuclear power plants is being developed around the world. This study describes the cutting technology and one of the technologies being considered for the RV/RVI cutting of Kori Unit 1. The dismantling technology for nuclear power plants include mechanical and thermal methods. Mechanical cutting methods include milling, drill saw, and wire cutting. The advantages of the mechanical method are less generating aerosol and less performance degradation in water. However, the cutting speed is slow and the reaction force is large. Thermal cutting methods use heat sources such as plasma arcs, oxygen, and lasers. The advantages of thermal method are fast cutting speed, low reaction force and thick material cutting. On the other hand, they have problems with fume and melt. Among them, the cutability of the oxygen cutting method is better in carbon steel than in stainless steel. In order to cut the RV/RVI of the Kori Unit 1, the applicability of fine plasma, arc saw, and band/ wheel saw is being reviewed. For RV cutting, the applicability of arc saw and oxy-propane is being considered Because RV is mostly made of carbon steel. However, since the flange is cladded with stainless steel, the use of mechanical methods such as wire saws should be considered. In the case of RVI, since it has a complicated shape and is made of stainless steel, it seems necessary to review various cutting methods. In addition, it will be necessary to minimize radiation exposure of workers by cutting underwater cutting.
        99.
        2022.05 구독 인증기관·개인회원 무료
        Many countries are developing various mechanical cutting technologies to dismantle nuclear facility. However, most of mechanical cutting technologies have a problem like the degradation of tool life due to the Hard-Machining materials. To solve this problem, lab-scale test was performed with a Plasma Assisted Machining (PAM) technology and 25 mm of thickness Inconel 600 plate. Commonly, the strength of metals decreases by exposure at high temperature. And, previous study reported that strength of Inconel 600 is degraded above 500°C. This softening effect was applied to Inconel 600 cutting test. The optimal conditions such as the plasma torch power and the feed rate were determined by this study. As a result, the surface temperature of Inconel 600 was reached up to 500°C under the conditions which is 8.4 kW of plasma torch power and 150–250 mm·min−1 of feed rate. And it was confirmed that the tool life was improved under the conditions. In order to apply PAM for various Hard- Machining materials, it is necessary to investigate the softening temperature of Hard-Machining materials, the plasma torch power and feed rate.
        100.
        2022.05 구독 인증기관·개인회원 무료
        Various cutting technologies are being developed for dismantling nuclear power plants. these technologies are including mechanical and thermal methods. For example, mechanical cutting methods include sawing, drilling and milling. But, due to the strength of material, mechanical cutting methods have limits of cutting depth and tool life. Therefore, this milling machine assisted plasma torch was developed to improve the limits. And this machine has the principle of softening effect caused by the high temperature. In this work, this developed device was evaluated in view of the cutting depth and tool life in cutting process. For this process, a plasma torch was attached to the front of the endmill processing path to heat the Inconel 600. As results, compare to conventional milling, when the plasma torch power is 6.4 kW, the cutting depth was increased by 4 mm at condition (feed rate is 100 mm·min−1, tool diameter is 10 mm, rotating speed is 1,000 rpm). And cutting length increase 2 times from 300 mm to 600 mm at 16 mm of tool diameter.
        1 2 3 4 5