검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7,150

        121.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Crystalline heptazine carbon nitride (HCN) is an ideal photocatalyst for photocatalytic ammonia synthesis. However, the limited response to visible light has hindered its further development. As a noble metal, Au nanoparticles (NPs) can enhance the light absorption capability of photocatalysts by the surface plasmon resonance (SPR) effect. Therefore, a series of Au NPs-loaded crystalline carbon nitride materials (AH) were prepared for photocatalytic nitrogen fixation. The results showed that the AH displayed significantly improved light absorption and decreased recombination rate of photo-generated carriers owing to the introduction of Au NPs. The optimal 2AH (loaded with 2 wt% Au) sample demonstrated the best photocatalytic performance for ammonia production with a yield of 70.3 μmol g− 1 h− 1, which outperformed that of HCN. This can be attributed to the SPR effect of Au NPs and alkali metal of HCN structure. These findings provide a theoretical basis for studying noble metal-enhanced photocatalytic activity for nitrogen fixation and offer new insights into advances in efficient photocatalysts.
        4,500원
        122.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphitic nitrogen-doped carbon film/nanoparticle composite, in which the films were wrapped and separated by the nanoparticles, was prepared through a simple co-calcination route. Due to its unique porous structure and improved nitrogen content, the as-prepared electrode material could exhibit high specific capacitances of 317.5 F g− 1 at 0.5 A g− 1 and 200.0 F g− 1 at 20 A g− 1, and stable cycling behavior with no capacitance decline after 10,000 cycles in three-electrode system. When assembled in two-electrode capacitor, its specific capacitance could be well kept at 265.5 F g− 1 at 0.5 A g− 1, and thus the supercapacitor with a high energy density of 9.22 Wh kg− 1 was obtained. The superior energy storage properties of the as-prepared material indicate its promising application as high-performance carbon-based electrode for supercapacitors.
        4,300원
        123.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, the search on fabrication of highly efficient, stable, and cost-effective alternative to Pt for the hydrogen evolution reaction (HER) has led to the development of new catalysts. In this study, we investigated the electrocatalytic HER activity of the Toray carbon substrate by creating defect sites in its graphitic layer through ultrasonication and anodization process. A series of Toray carbon substrates with active sites are prepared by modifying its surface through ultrasonication, anodization, and ultrasonication followed by anodization procedures at different time periods. The anodization process significantly enhances the surface wettability, consequently resulting in a substantial increase in proton flux at the reaction sites. As an implication, the overpotential for HER is notably reduced for the Toray carbon (TC-3U-10A), subjected to 3 min of ultrasonification followed by 10 min of anodization, which exhibits a significantly lower Tafel slope value of 60 mV/dec. Furthermore, the reactivity of the anodized surface for HER is significantly elevated, especially at higher concentrations of sulfuric acid, owing to the enhanced wettability of the substrate. The lowest Tafel slope value recorded in this study stands at 60 mV/dec underscoring the substantial improvements achieved in catalytic efficiency of the defect-rich carbon materials. These findings hold promise for the advancement of electrocatalytic applications of carbon materials and may have significant implications for various technological and industrial processes.
        4,000원
        124.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silicon carbide (β-SiC) was synthesized through an improved sol–gel method, then Ni/SiC catalysts were prepared using a hydrothermal method. The catalysts were characterized using TEM, H2- TPR, CO2- TPD and N2- TPD, etc. The results showed that the synthesized β-SiC had a large specific surface area, promoting the dispersion of Ni species and thus exposing more active sites. The interaction between Ni species and β-SiC contributed significantly to catalytic performance. Furthermore, the strong alkalinity of catalyst could adjust the bond energy of the active metal and N (M–N), which were conducive to desorption of the recombinant N2 from the metal surface, promoting to ammonia decomposition. Among the Ni/SiC catalysts, 30Ni/SiC-700 synthesized with the Ni loading of 30 wt% and calcination temperature of 700 °C, exhibited the optimal ammonia conversion rate of 93.4% at 600 °C under the space speed of 30,000 mL∙gcat −1∙h−1, and demonstrated a long-term stability, suggesting a very promising catalyst in ammonia decomposition.
        4,200원
        125.
        2024.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanoparticles, especially those derived from plant extracts, are becoming increasingly popular as a bio-based, environmentally friendly alternative to conventional technologies. The Maui rose, a flowering plant with medicinal and therapeutic properties, is one of the most important of these materials because its extract component has antibacterial, antioxidant and anti-inflammatory biological activity. In this work, we report on synthesizing and characterizing iron oxide nanoparticles (Fe2O3) extracted from flower plants (Borago), to create persistent and environmentally friendly antibacterial agents. As part of the chemical formation process, Fe2O3 nanoparticles were extracted from specific flower plants utilizing a series of carefully regulated chemical reactions. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) of the samples were studied. The nanoparticles produced were analyzed using common microbiological methods and studies (EDS). The antibacterial activity of the Fe2O3 nanoparticles and their effect on a range of microorganisms were evaluated. The results demonstrated that Fe2O3 nanoparticles were successfully synthesized with a specific crystal structure and good anti-bacterial activities.
        4,000원
        126.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Regional economic integration organizations (REIOs) can ratify climate change agreements as mixed agreements, including the Paris Agreement, with their member states. A question may arise on what responsibilities can REIOs have under the Paris Agreement in relation to the member states. Analyzing the draft articles on the responsibility of international organizations reveals that REIO can have derived (indirect) responsibility for non-fulfilling the obligations by member states due to the normative control resulting from the adoption of binding resolutions. Also, under Article 4.18 of the Paris Agreement, REIO will be jointly responsible for non-realization of the goals communicated in the NDCs together with non-compliant member. This will make the non-compliant states responsible externally to the third parties and to REIO internally in achieving the goals of NDC and will encourage the compliant member states to participate in realizing the collective goal of REIO because of influence of not realizing the collective goal.
        5,800원
        127.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국경 간 인수합병(Cross-border M&A)은 이중 조직 정체성과 다양한 제도적 환경을 관리하는 복잡한 통합 과제를 포함한다. 기존 연구들은 주로 국가 수준의 요인에 초점을 맞췄지만, 특히 자 회사의 경험과 같은 목표 기업의 특성에 대한 연구는 상대적으로 부족했다. 본 연구는 자회사 대 독립 기업, 국내 자회사 대 해외 자회사와 같은 다양한 목표 기업의 특성이 국경을 넘는 M&A에서 인수 기업의 주주 가치에 어떻게 영향을 미치는지 분석한다. 1994년부터 2012년까지의 국경을 넘 는 M&A 거래에 대한 이벤트 연구를 통해, 자회사의 경험이 인수 기업의 주주 가치를 증가시킨다 는 것을 발견했다. 그러나 제도적 거리가 증가할수록 국내 자회사의 경험 가치는 감소하는 경향이 있었다. 이러한 연구 결과는 국경을 넘는 M&A에서 자회사 경험의 중요성을 강조하며, 제도적 거 리가 그 효과를 어떻게 조절하는지를 보여준다. 이는 연구자와 실무자 모두에게 중요한 시사점을 제공한다.
        9,800원
        129.
        2024.11 구독 인증기관 무료, 개인회원 유료
        North Korea has repeatedly provoked using unmanned aerial vehicles (UAVs), and the threat posed by UAVs continues to escalate, as evidenced by recent directives involving the use of waste-laden balloons and the development of suicide drones. North Korea’s small UAVs are difficult to detect due to their low radar cross-section (RCS) values, necessitating the efficient deployment and operation of assets for effective response. Against this backdrop, this study aims to predict the infiltration routes of enemy UAVs by considering their perspective, avoiding key facilities and obstacles, and propose deployment strategies to enable rapid detection and response during provocations. Utilizing the Markov Decision Process (MDP) based on previous studies, this research presents a model that reflects both UAV flight characteristics and regional environments. Unlike previous models that designate a single starting point, this study addresses the practical challenge of uncertainty in initial infiltration points by incorporating multiple starting points into the scenarios. By aggregating and integrating the probability maps derived from these variations into a unified map, the model predicts areas with a high likelihood of UAV infiltration over time. Furthermore, based on case studies in the capital region, this research proposes deployment strategies tailored to the specifications of currently known anti-drone integrated systems. These strategies are expected to support military decision-making by enabling the efficient operation of assets in areas with a high probability of UAV infiltration.
        4,000원
        130.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The feeder pipes of the primary cooling system in a pressurized heavy water reactor (PHWR) are composed of carbon steel SA 106 GR.B. On the surface of this structural material, corrosion oxide layers including radionuclides are formed due to the presence of active species from water decomposition products caused by radiation, as well as the high temperature and high-pressure environment. These oxide layers decrease the heat transfer efficiency of the primary cooling system and pose a risk of radiation exposure to workers and the environment during maintenance and decommissioning, making effective decontamination essential. In this study, we simulated the formation of the corrosion oxide layer on the surface of carbon steel SA 106 GR.B, characterized the formed corrosion oxide layer, and investigated the dissolution characteristics of the corrosion oxide layer using oxalic acid (OA), a commercial chemical decontamination agent. The corrosion oxide layer formed has a thickness of approximately 4 μm and consists of hematite ( Fe2O3) and magnetite ( Fe3O4). The carbon steel coupons with formed oxide layers were dissolved in 10 mM and 20 mM OA solutions, resulting in iron ion concentrations of 220 ppm and 276 ppm in the OA respectively. In 10 mM and 20 mM OA, the corrosion depths of the coupons were 8.93 μm and 10.22 μm, with corrosion rates of 0.39 mg/cm2·h and 0.45 mg/cm2·h, respectively. Thus, this demonstrates that higher OA concentrations lead to increased dissolution and corrosion of steel.
        4,000원
        131.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A substantial quantity of discarded tires has inflicted harm on the environment. Microwave pyrolysis of discarded tires emerges as an efficient and environmentally friendly method for their recycling. This research innovatively utilizes the characteristics of microwave rapid and selective heating to pyrolyze waste tires into porous graphene under the catalysis of KOH etching. Moreover, this study comprehensively investigates the dielectric characteristics and heating behavior of waste tires and different proportions of waste tire–KOH mixtures. It validates the preparation of graphene through KOH-catalyzed microwave pyrolysis of waste tires, tracking morphological and structural changes under varying temperature conditions. The results indicate that optimal dielectric performance of the material is achieved at an apparent density of 0.68 g/cm3 at room temperature. As the temperature increases, the dielectric constant gradually rises, particularly reaching a notable increase around 700 °C, and then stabilizes around 750 °C. Additionally, the study investigates the penetration depth and reflection loss of mixtures with different proportions, revealing the waste tire–KOH mass ratio of 1:2 demonstrates favorable dielectric properties. This research highlights the impressive microwave responsiveness of the waste tire–KOH mixture, Upon the addition of KOH, the mixed material exhibits an augmented dielectric constant and relative dielectric constant, supporting the viability of KOH-catalyzed microwave pyrolysis for producing porous graphene from waste tires. This method is expected to provide a new method for the valuable reuse of waste tires and a technology for large-scale, efficient and environmentally friendly production of graphene.
        4,800원
        132.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The economical manufacturing of high-quality graphene has been a significant challenge in its large-scale application. Previously, we used molten Sn and Cu as the heat-transfer agent to produce multilayer graphene on the surface of gas bubbles in a bubble column. However, element Sn and Cu have poor catalytic activity toward methane pyrolysis. To further improve the yield of graphene, we have added active Ni into Sn to construct a Sn–Ni alloy in this work. The results show that Sn–Ni alloy is much more active for methane pyrolysis, and thus more graphene is obtained. However, the graphene product is more defective and thicker because of the faster growth rate. By using 300 ml molten Sn–Ni alloy (70 mm height) and 500 sccm source gas ( CH4:Ar = 1:9), this approach produces graphene with a rate of 0.61 g/hr and a conversion rate of methane to carbon of 37.9% at 1250 ℃ and ambient pressure. The resulting graphene has an average atom layer number of 22, a crumpled structure and good electrical conductivity.
        4,000원
        133.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For metal-free carbocatalysts, heteroatom doping and hierarchically porous structure are the significant factors to improve their catalytic performances. Herein, N-, P-co-doped hierarchically porous carbon fiber (NPC–2–800) was prepared by pyrolyzing bamboo pulp in combination with ( NH4)2HPO4 and activator K2CO3. It was found that ( NH4)2HPO4 not only provides N and P atoms, but also significantly affect the morphology and pore structure of the porous carbon. An appropriate dosage of ( NH4)2HPO4 facilitates the formation of hierarchically porous carbon fiber in NPC-2–800. Whereas, the carbon fragments with only micropores were obtained in absence of ( NH4)2HPO4. The hierarchical porosity and the co-doping of N and P atoms in the NPC-2–800 contribute to its outstanding catalytic performances in the 4-Nitrophenol (4-NP) reduction assisted by NaBH4. The NPC-2–800 exhibits an attractive turnover frequency (TOF) value of 4.29 × 10– 4 mmol mg− 1 min− 1, a low activation energy (Ea) of 24.76 kJ/mol, and an acceptable recyclability for 7 cycles without obvious decrease in activity. Kinetics analyses suggest that the 4-NP reduction proceeds through the Langmuir–Hinshelwood model. In addition, the NPC-2–800 can also efficiently catalyze the 2-NP and 3-NP reduction. Moreover, in the real water body, the NPC-2–800 also showed superior catalytic activity to catalyze 4-NP reduction. This study provides an efficient catalyst for pollutant conversion and elimination as well as guidelines for designing versatile carbon-based catalysts.
        4,300원
        134.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the development of photocatalytic hydrogen production technology, the effective transport of photogenerated carrier electrons is still one of the main factors affecting the performance of photocatalytic hydrogen evolution. In this work, graphdiyne was prepared by ball milling method. The CoMo-MOF with polyhedral structure was introduced into graphdiyne to construct S-scheme heterojunction to promote the efficient transfer of photogenerated carriers and enhanced hydrogen evolution activity. Graphdiyne is a new carbon material with adjustable band gap, which is synthesized from the hybrid of sp and sp2, and has excellent electrical conductivity. CoMo-MOF is a polyhedral structure that can provide more active sites and promote photocatalytic hydrogen evolution. The weak point of poor conductivity in CoMo-MOF has been successfully improved by combining CoMo-MOF with graphdiyne, and the migration rate of photogenerated carriers has been accelerated. The hydrogen evolution property of graphdiyne/CoMo-MOF is 300 μmol, which is 19.61 times that of graphdiyne and 9.03 times that of CoMo-MOF. Therefore, the construction of S-scheme heterojunction provides a transport channel for electron transfer and improves the efficiency of photogenerated carrier separation. This work provides a new train of thought of design to introduce MOFs materials into carbon materials for photocatalytic hydrogen evolution.
        4,600원
        135.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Colorectal cancer (CRC) poses a significant global public health challenge, accounting for 10% of newly diagnosed cancer cases and causing 9.4% of cancer-related deaths. Conventional treatment methods like surgery, chemotherapy, and radiation have shown limited success despite the increasing incidence of CRC. Thus, there is an urgent need for innovative therapeutic approaches. Researchers are continually working on developing novel technologies, notably focused on the creation of safe and effective cancer nanomedicines, in their continuous effort to advance cancer treatment. Nanoparticles exist at the nanoscale. Nanoparticles at the nanoscale have distinctive properties that leverage the metabolic disparities between cancerous and normal cells. This property allows them to selectively induce substantial cytotoxicity in cancer cells while minimizing damage to healthy tissue. Carbon nanomaterials (CNMs), including graphene oxide (GO), carbon nanotubes (CNTs), and nanodiamonds (NDs), have undergone extensive investigation due to their biocompatibility, surface-to-volume ratio, thermal conductivity, rigid structural properties, and ability for post-chemical modifications. Notably, GO has emerged as a promising two-dimensional (2D) material for cancer treatment. Several groundbreaking nanoparticle-based therapies, predominantly utilizing GO, are currently undergoing clinical trials, with some already gaining regulatory clearance.
        5,400원
        136.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of the study was to develop clothing that enhances comfort for children using gastrostomy tubes while maintaining a design that is no different from that of non-disabled children. The discomfort experienced by children with gastrostomy tubes wearing regular daily clothing was investigated through medical papers and blogs of their parents. The designs were then created to address the issues. The results were as follows: Because the location of the gastrostomy tube is in the upper body, four types of clothing items were developed: one sweatshirt for boys, two one-piece dresses for girls, and one windbreaker suitable for both boys and girls. Considering practicality for children’s clothing, cotton fabric was prioritized. For sweatshirts and windbreakers, a patched pocket with a dog pattern was placed over the area containing the gastrostomy tube to hide it. Frills were used to conceal the gastrostomy tube in one-piece dresses and designed to allow easy access for eating or disinfecting the area. This study aimed to address the challenges children with gastrostomy tubes face when wearing the regular daily clothes of non-disabled children while also offering aesthetically pleasing designs that enhance convenience for those using gastrostomy tubes. We believe this study will not only raise public awareness of disabilities but also inspire research on future clothing for both children and adults using gastrostomy tubes.
        4,000원
        137.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박의 조종성능은 조선해양공학 분야에서 매우 중요한 유체역학적 성능 중 하나입니다. 본 연구에서는 저수심에서 운용되는 24m급 쌍동선을 대상으로 직진성능 분석에 대한 연구를 진행하였습니다. Skeg의 설치를 통해 조종성능을 개선할 수 있는지 여부를 확인 하기 위해, 전산유체역학(CFD) 수치해석 시뮬레이션을 활용하여 가상의 포획 모형테스트를 진행하였습니다. 시뮬레이션은 PMM(Planar Motion Mechanism) 조화 시험 중 Pure-sway 및 Pure-Sway motion, 2가지 시험을 진행하였으며, 선박의 선회성능은 직진성능 지수(C)의 경험식 을 통해 확인하였습니다, 결론적으로, Skeg가 없는 기존 선체는 직진성능이 상대적으로 저조하며, Skeg 1을 적용해도 부정적인 C 지수 값 을 보여 항로유지 능력이 개선되지 않았다. 하지만 Skeg 2, 3 또는 4를 적용하였을 때, 긍정적인 C 지수 값을 보여 항로유지 능력이 개선 되는 것을 보이며, 이는 Sway motion의 드리프트 경향에 비해 선체가 Yaw 또는 방향을 더 바꾸기 쉽다는 것을 나타낸다.
        4,000원
        138.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the preferences and purchase intentions of ZEPETO users regarding fashion brands that have recently joined ZEPETO, a leading metaverse platform in South Korea. The study surveyed 279 users in their 20s to 40s about their usage patterns, preferences, and purchase intentions toward products from brands like MCM, DKNY, Nike, and Puma. The results reveal that users in their 20s exhibited higher preference and purchase intention for Nike products, as well as greater purchase intention for Puma products. On the other hand, users in their 40s displayed a higher preference and purchase intention for MCM and DKNY products and a stronger preference for Puma products compared to other age groups. Users in their 30s showed a lower preference and purchase intention for both MCM and Puma products, a lower purchase intention for DKNY products, but a preference for Nike products compared to other age groups. Furthermore, men showed a higher preference and purchase intention for most brands, including MCM, Nike, and Puma. These results suggest that fashion brands on ZEPETO need to implement effective marketing strategies targeting users in their 20s and 40s, as well as male users. This study lays the groundwork for further research on the ZEPETO metaverse platform and provides foundational data for understanding user behavior, essential for establishing effective promotional strategies.
        5,800원
        139.
        2024.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, ferric phosphate precursors were prepared by controlling precipitation time, and the resulting LiFe PO4 active materials were thoroughly investigated. Microscale LiFePO4 cathode materials, designed for high energy density at the cell level, were successfully synthesized through a 10 h co-precipitation. As the reaction time increased, smaller primary particles were aggregated more tightly, and the secondary particles exhibited a more spherical shape. Meanwhile, ammonia did not work effectively as a complexing agent. The carbon coated LiFePO4 (LiFePO4/C) synthesized from the 10 h ferric phosphate precursor exhibited larger primary and secondary particle sizes, a lower specific surface area, and higher crystallinity due to the sintering of the primary particles. Enhanced battery performance was achieved with the LiFePO4/C that was synthesized from the precursor with the smaller size, which exhibited the discharge capacity of 132.25 mAh ‧ g-1 at 0.1 C, 70 % capacity retention at 5 C compared with 0.1 C, and 99.9 % capacity retention after the 50th cycle. The better battery performance is attributed to the lower charge transfer resistance and higher ionic conductivity, resulting from smaller primary particle sizes and a shorter Li+ diffusion path.
        4,000원
        140.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        River discharge is a crucial indicator of climate change and requires accurate and continuous estimation for effective water resource management and environmental monitoring. This study used satellite gravimetry data to estimate river discharge in major basins with high discharge volumes, specifically the Congo and Orinoco basins. By enhancing the spatial resolution of gravity data through advanced post-processing techniques, including forward modeling and river routing schemes, we effectively detected changes in the water mass stored within river channels. Additionally, signals from surrounding regions were statistically removed using the Empirical Orthogonal Function (EOF) analysis to isolate river-specific discharge signals. These refined signals were then converted into river discharge data through seasonal calibration using the modeled discharge data. Our results demonstrate that this method yields accurate and reliable discharge estimates comparable to in-situ measurements from gauge stations, even without ground-based surveys such as an Acoustic Doppler Current Profiler (ADCP) field campaigns. This research highlights the significant potential of satellite-based gravity data as an alternative to traditional ground surveys, providing practical information on the hydrological status of regions associated with large-scale river systems.
        4,500원