Combined pregnancy occasionally occurs when intrauterine pregnancy is complicated with ectopic pregnancy. The incidence of combined pregnancy is normally rare, but the incidence increases when assisted reproductive technology was conducted for infertility treatment. We had a case of intrauterine pregnancy complicated with tubal pregnancy after IVF-ET cycle was conducted. The tubal pregnancy was removed via pelviscopy, which led to the delivery of healthy offspring at the week of pregnancy without additional complication.
This study was conducted to examine the effects of human follicular fluid and gonadotropin (FSH+HCG+rhEGF) on in vitro maturation, fertilization and development of human immature oocytes. Cumulus-oocyte complexes (COCs) were collected following for in vitro fertilization and embryo transfer (IVF-ET) cycles of the patients. At the time of oocytes collection, oocytes were classified into MII, MI and GV in accordance with their appearance (MII: Fully mature oocyte at metaphase II of meiosis; MI: Nearly mature oocytes at metaphase I of meiosis; GV: Immature oocytes at prophase I of meiosis). After controlled ovarian stimulation using gonadotropin(FSH) and human chorionic gonadotropin (HCG) in 70 ICSI cycles, 158 MI to MII matured oocytes were intracytoplasmic sperm injection (ICSI) h after in vitro culture and 553 MII oocytes were ICSI after denudation. The aspirated MI and GV oocytes were cultured in culture medium containing 10% (v/v) serum protein substitute (SPS), 10% (v/v) human follicular fluid (hFF) and 10% (v/v) serum protein substitute (SPS)+1 IU/ml FSH+10 IU/ml HCG+10 ng/ml recombinant human epidermal growth factor (rhEGF). The maturation rate of immature oocytes was similar among the three group. When maturation medium was supplemented with 10% SPS, 10% hFF or gonadotropins, the fertilization rate of in vitro matured oocytes was higher in 10% SPS (80.0%), but there was no statistical significance (78.2%; hFF, 76.9%; gonadotropin, p>0.05). The development rate of human embryos developed to cells were not significant difference in the medium containing SPS, hFF and gonadotropins (65.6%, 65.9% and 66.7%). The results of these study suggest that human follicular fluid and gonadotropins supplemented in the culture medium was not effected on the in vitro maturation, fertilization and development of human immature oocytes.
The purpose of this study was to compare the efficiency of slow freezing with that of vitrification method for the cryopreservation of human embryos. Human embryos were derived from in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) and the mixed solution of propanedial (1.5, 1.0, 0.5M PROH) and sucrose (0.1M), ethylene glycol (7.5, 15%), dimethyl sulfoxide (7.5, 15% DMSO), sucrose (0.5, 1.0M) and SPS (Serum Protein Substitute) was used for a cryoprotectant for slow freezing and vitrification solution, respectively. Rates of recovery after thawing, morphological normality, post-thaw viability, arrest, morphological abnormality and preimplantation development were compared between two protocols. After freezing-thawing, recovery and survial rate of slow freezing was (88.6% and 73.4%), whereas vitrification was (99.2% and 96.2%) (p<0.05). The arrest rate of slow freezing was significantly lower compared with those of vitrification(8.7% vs 29.9%) (p<0.05). Preimplantation development to the 2-cell (83.8% vs 67.7%), 4-cell (69.0% vs 47.2%) and 8-cell (62.4% vs 37.8%) stages 24, 48 and 72 h after thawing, respectively, were higher in the slow freezing than the vitrification. After slow freezing and vitrification of human embryo at 2-8cell stage, the rate of recovery rate, survival rate and partial damage rate were 92.0% vs 100%, 80.4% vs 96.2% and 52.2% vs 19.0%, respectively. And partial damage rate was significantly lower than those of slow freezing method (p<0.05). These results demonstrate that a slow freezing using PROH is more efficient than a vitrification for cryopreserving the human zygotes, although the vitrification yielded better recovery, survival and partial damage of frozen-thawed 2-8 cell stage embryos than slow freezing method.
복제수정란 생산에 있어서 수핵란 내 체세포 주입 후 전기적인 융합은 필수과정인데, 이 과정을 거치는 동안 많은 수의 체세포 주입 난자가 융합에 실패하거나 lysis가 일어나게 된다. 본 실험에서는 한우 체세포를 이용하여 핵이식을 실시한 후 수핵세포질과 응합을 시도할 때 전기융합 방법에 따른 융합율과 배발달율을 검토하고자 실시하였다. 공여세포는 한우 귀 세포조직을 채취하여 0.05% trypsin과 EDTA가 첨가된 D-PBS로 세포를 분리한 후 DMEM
정자의 동결보존을 위한 새로운 기술개발 목적은 동결과정에서 최소한의 손상으로, 응해 후 최대한 높은 활력도의 정자를 얻는 것이다 정자가 난자와 수정하기 위해서는 적당한 생존성과 운동성을 유지해야 하는데, 가장 일반적인 방법으로는 정자의 진진 운동성과 첨체의 정상 여부 및 형태 검사방법 등이 있다 본 연구는 사람 정액을 동결보존 할 때 semi-programmable freezer를 이용한 완만동결 방법과, 액체질소의 vapor를 이용한 급속동결 방법이
본 연구는 한우 체외수정란에 외래 유전자를 미세현미 주입한 후 체외 배발달을 조사하였다. DNA 미세주입은 체외수정 18~20시간 후에 DNA를 미세주입하였으며 체외 배발달율은 7일간 배양 후 조사하였다. 미세현미 주입 후 난할율은 36.3%로 대조구의 난할율 66.4% 보다 유의적으로 낮았으며(p<0.05) DNA가 주입된 수정란 중 상실배와 배반포배까지 발달율은 각각 5.6%와 1.9%로 대조구의 20.5%와 12.8%에 비하여 유의적으로 낮게 나타
This study was conducted to investigate the effect of hormones, protein sources and anti-oxidants on in vitro maturation (IVM) and in vitro fertilization(IVF) of bovine follicular oocytes. The rates of Holstein follicular oocytes classified as grade A and B(50.2% and 33.2%) were higher than those of Hanwoo cattle(40.3% and 32.0%, P<0.05). The cumulus cell expansion rates of oocytes cultured in TCM-199 and Ham's F-10 medium supplemented with 10% FCS and hormones were higher (81.9~87.6%) than those of non-treated groups (74.5~81.7%). The fertilization rates of oocytes cultured in TCM-199 and Ham's F-10 medim supplemented with 10% FCS, 1% BSA and 10% bFF was 53.8~55.0%, 51.4~52.6%, and 47.0~50.0%, respectively. The polyspermy rates was 13.6~14.2%, 10.0~11.1%, and 10.0%, respectively. When the oocytes were cultured in TCM-199 and Ham's F-10 medium with 50 -tocopherol, the fertilization rates was 62.0 and 60.2%, respectively. In the maturation medium added of 100 cysteamine, the fertilization rates was 64.7 and 66.7%, respectively. The fertilization and polyspermy rates of treated groups were higher than those of non-treated group. The results show that hormones, protein sources and anti-oxidants can provide a benefit for in vitro maturation and fertilization of bovine follicular oocytes.
The effect of several potential antioxidants were examined as a means of increasing the in vitro development of in vitro matured and in vitro fertilized oocytes into morulae and blastocysts. Korean native cattle embryos after in vitro fertilization were cultrued for 7 days at 38.5 in CR1aa containing varing concentration of the antioxidants in a gas phases consisting of 5% CO2, 95% humidified air. The results obtained were summarized as follows; The proportion of embryos developed to morulae and blastocysts in CR1aa containing 2.5uM -tocopherol(11.0% and 6.0%) was significantly higher than those of 0, 5.0, and 7.5uM -tocopherol (P<0.05). concentration of 50uM L-ascorbic acid (7.5% blastocysts) did affect the proportion of embryos developing into blastocystes(P>0.05). Addition of 200uM cysteamine was significantly higher than those of 0, 100 and 300uM (P<0.05). When the fertilized oocytes were cultured at 0. 200, 400 and 600uM of selenium for 168 hrs, the morulae rates were 12.2, 5.2, 16.0 and 16.1% respectively, and addition of 200uM selenium was significantly higher than those of 0, 400, 600uM (P<0.05). These results suggested that the addition of -tocopherol, L-ascorbic acid, cysteamine and selenicum can enhanced development to the morulae and blastocysts of in vitro derived fertilized oocytes.