검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : High concentrations of particulate matter (PM) are emitted or generated from vehicle emissions in urban roads with dense transient populations. To reduce the effect of PM emission on bus stop users at roadsides, a plan to reduce PM emitted from the roadside must be devised. In this study, an atmospheric environment at a roadside is simulated in a large-scale environment chamber, and a test for reducing PM around the bus stop is conducted by installing a bus stop adapted to a PM reduction system. METHODS : Exhaust gas is injected into the experimental and reference chambers using diesel and gasoline vehicles for roadside airquality simulations. The two vehicles are operated in an idle state without an acceleration operation to emit exhaust gas uniformly, and the initial conditions are achieved by injecting car emissions for approximately 40 min. The initial condition is set to 1 ppm of NOx concentration in the environment chamber. Between the two environment chambers, a bus stop adapted to the PM reduction system is installed in the experimental chamber to conduct a PM reduction experiment pertaining to the air quality around the roadside. The experimental progress is set as the start time of the experiment based on the time at which the initial conditions are achieved; simultaneously, the PM reduction system in the experimental chamber is operated. After the simulation is commenced, the PM concentration, which changes over time, is measured using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) without additional injection of car emissions or pollutants. The HR-ToF-AMS measures the chemical composition of non-refractory PM1.0 (NR-PM1.0) in real time. RESULTS : The NR-PM1.0 compound (organic aerosol (OA), NO3 -, SO4 2-) increases by 160% compared with the simulated initial concentration up to T90min in both environmental chambers; this is speculated to be due to secondary formation. The reference chamber indicates a slight decrease or a steady-state after T90min, whereas the experimental chamber indicates a gradually decrease as the experiment progresses. The bus stop adapted to the PM reduction system reduces the amount of black carbon in the experimental chamber by 37% at 200 min. This implies that the PM emitted from the roadside is filtered via the PM reduction system installed at the bus stop, and cleaner air quality can be provided to passengers. CONCLUSIONS : The PM reduction system evaluated in this study can be detached from and attached to the outdoor billboard of a bus stop. Since it adopts air filtration technology that uses a high-efficiency particulate air filter, it can be maintained and managed easily. In addition, it can provide an atmospheric environment with reduced PM emission to passengers as well as provide a better air-quality condition to passengers waiting for public transportation near roadsides.
        4,000원
        2.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식육 중 플로르페니콜을 분석하기 위하여 시료를 ethyl acetate로 추출 농축한 후 이 농축액을 acetonitrile과 nhexane을 가하여 분획하고, acetonitrile층을 분리하여 농축하였다. 이를 Oasis HLB cartridge로 정제하고 C18 컬럼을 이용한 HPLC-FLD로 분석하였다. 분석법은 표준물질 0.05~1.0 mg/kg의 농도범위에서 직선성(r2=0.9997)을 나타냈으며, 검출한계는 0.012 mg/kg, 정량한계는 0.039 mg/kg 이었다. 또한 회수율은 쇠고기에서 87.6~92.3 %, 돼지고기에서 85.6~93.3 %, 닭고기에서 92.9~95.6 %이었으며, 상대 표준편차(RSD)는 쇠고기, 돼지고기, 닭고기에서 각각 1.1~4.8 %, 1.1~3.4 %, 1.0~5.3 %이었다. 본 연구에서 확립 된 분석방법으로 유통 중인 식육(쇠고기, 돼지고기, 닭고기) 150건을 전국 지역(서울, 부산, 대구, 대전, 광주)별로 수거하여 플로르페니콜의 잔류 실태를 조사한 결과, 돼지고기 1건에서 0.040 mg/kg이 검출되었으며, 돼지고기 2건, 쇠고기 1건, 닭고기 2건에서는 검출되었으나 정량한계 미만의 수준이었다. 이들 결과로부터 우리나라에서 유통 중인 조사한 식육 150건의 플로르페니콜 잔류량은 모두 국제기준에 적합한 것으로 조사되었다.
        4,000원