This study aims to present a performance based design for apartments through evacuation safety assessment and damage impact assessment due to acrylonitrile leakage. In the evacuation safety evaluation, ASET was analyzed as 25 min or more and 60 min or less when the ventilation rate was once per hour, and RSET was 22.6 min. Evacuation safety is satisfied when the number of ventilation per hour is less than 1, so it is necessary to design the number of ventilation to be 1 or less. In the damage impact assessment, the 0% structural collapse rate due to overpressure was measured to be between 71m and 90m, and the 0% fatality rate due to radiant heat was measured to be between 136m and 353m. Therefore, maintain a safe distance of 353m or more.
This study aims to present safety distances by the damage impact assessment of the leakage of propylene oxide. As a result of the experiment, the pressure 1psi range was 52m to 169m, the radiant heat 18kW/㎡ range was 63m to 163m, the AEGL-2 range was analyzed as 224m to 414m, and the fire ball diameter was analyzed to be 45m to 121m. Additionally, the extent of damages was proportional to the amount of propylene oxide stored or handled. The safe distance for a 10% lethality due to overpressure and radiant heat was calculated to be 134m, and the safe distance for a 0% lethality was 169m. Toxicity was measured at 134m with a lethality 0%. Therefore, the safety distance due to leakage of propylene oxide is calculated to be between 134m and 169m.
This study tested the effect on the toxicity of formaldehyde to select a shelter site due to formaldehyde leakage. As a result of the experiment, the range of ERPG-2 and 3 is between 2.2km and 9.6km, ASET is 6 minutes at 1km, 15 minutes at 3km, 22 minutes at 5km, and the lethality rate is 99.9% at 1km and 9% at 3km. In areas where refuge time is less than 15 minutes or the lethality rate is more than 2%, a shelter is installed. This is because if there are only a few evacuees, the evacuation time may take longer than the pre-movement time of 15 minutes or less specified in PD 7974-6:2004, and the lethality rate with the lowest number of deaths was calculated to be 2%. The shelter must be equipped with a hepa-filter, positive pressure equipment, air purifier, air respirator, goggles, chemical protective clothing type 4 and sufficient parking space must be secured to ensure the safety of evacuees.
AlSi10Mg alloys are being actively studied through additive manufacturing for application in the automobile and aerospace industries because of their excellent mechanical properties. To obtain a consistently high quality product through additive manufacturing, studying the flowability and spreadability of the metal powder is necessary. AlSi10Mg powder easily forms an oxide film on the powder surface and has hydrophilic properties, making it vulnerable to moisture. Therefore, in this study, AlSi10Mg powder was hydrophobically modified through silane surface treatment to improve the flowability and spreadability by reducing the effects of moisture. The improved flowability according to the number of silane surface treatments was confirmed using a Carney flowmeter. In addition, to confirm the effects of improved spreadability, the powder prior to surface treatment and that subjected to surface treatment four times were measured and compared using s self-designed recoating tester. The results of this study confirmed the improved flowability and spreadability based on the modified metal powder from hydrophilic to hydrophobic for obtaining a highquality additive manufacturing product.
본 연구에서는 강도를 조절한 마이크로겔을 사용하여 다양한 점탄성을 갖는 콜로이드 마이크로겔을 제조하였다. 하이드로겔의 화학적 가교제의 함량이 증가할수록 팽윤비는 2.0×104%에서 6.0×103%까지 감소하였고, 강도는 22.2 kPa에서 99.7 kPa까지 증가하였다. 이를 100 μm 크기로 분쇄하여 마이크로겔을 제작하였고 이온성 가교결합을 유도하는 분산액과 혼합하여 콜로이드 마이크로겔을 제작하였다. 그 결과, 가교제의 가교도와 분산액에 따라 10-1rad/s의 진동수에서 1.679 kPa.s에서 86.485 kPa.s까지 점도를 세밀하게 조절할 수 있었다. 본 연구에서는 콜로이드 마이크로겔의 물성을 제어하기 위해 하이드로겔의 가교도를 조절 또는 분산액의 종류와 함량을 조절하여 다양한 유변학적 거동을 갖는 콜로이드 마이크로겔을 제조하였다. 물성을 제어할 수 있는 콜로이드 마이크로겔을 사용하여 향후 콜로이드 현탁액 및 유화를 제조하는 화장품, 제약, 페인트 및 식품 산업에서 목적에 따라 적합한 물성을 갖는 콜로이드 마이크로겔을 제조할 수 있다.