Protein can be provided by cultivating various microbes, which contain more than 30% protein content by cell dry weight. This study compared intracellular protein concentrations of various wild-type yeasts from different sources to select the best yeast strain with high protein concentration. Among them, Saccharomyces cerevisiae KCCM 34709, used for molasses fermentation, exhibited 4.1-fold higher protein concentration than a laboratory yeast strain, S. cerevisiae D452-2. In this study, an approach consisting of random mutagenesis coupled with the Bradford protein assay-based screening method was applied to enhance the S. cerevisiae KCCM 34709 protein content. Among 1,000 mutants, the #180 mutant strain produced 5,041±519 mg/L total amino acid in 48 h, which was 31% higher than the parental S. cerevisiae KCCM 34709 strain. These results demonstrate that the #180 mutant strain can be an attractive cell factory for animal-free protein production.
Understanding the light environment in greenhouse cultivation and the light utilization characteristics of crops is important in the study of photosynthesis and transpiration. Also, as the plant grows, the form of light utilization changes. Therefore, this study aims to develop a light extinction coefficient model reflecting the plant growth. To measure the extinction coefficient, five pyranometers were installed vertically according to the height of the plant, and the light intensity by height was collected every second during the entire growing season. According to each growth stage in the early, middle, and late stages, the difference between the top and bottom light intensity tended to increase to 69%, 72%, and 81%. When leaf area index and plant height increased, the extinction coefficient decreased, and it showed an exponential decay relationship. Three-dimensional model reflecting the two growth indexes, the paraboloid had the lowest RMSE of 1.340 and the highest regression constant of 0.968. Through this study, it was possible to predict the more precise light extinction coefficient during the growing period of plants. Furthermore, it is judged that this can be utilized for predicting and analyzing photosynthesis and transpiration according to the plant height.