Maintaining probiotic viability during storage, freeze-drying, and gastrointestinal transit is essential to ensure efficacy. The present study evaluated VitaShield Coating® (VSC), an innovative stabilization technology incorporating vitamins A, C, and E, for enhancing the viability of Bifidobacterium strains. VSC-coated B. bifidum BGN4 exhibited a significantly higher freeze-drying recovery rate (43.91±4.69%) compared to that of the uncoated group (15.31±6.53%, p<0.0001), with scanning electron microscopy (SEM) confirming preservation of structural integrity. Gastrointestinal stability also improved, as coated cells retained 26.21±2.41% viability in simulated gastric fluid, significantly outperforming uncoated cells (3.20±2.30%, p<0.0001). Gas chromatography-mass spectrometry (GC-MS) revealed a significant increase in polyunsaturated fatty acids (PUFAs) in coated cells, indicating enhanced membrane stability. Furthermore, storage stability of four Bifidobacterium strains (AD011, BORI, BGN4, and RAPO) was evaluated over 16 weeks at 25℃ and 30℃. The findings indicate that the VSC coating effectively protects probiotic strains under harsh storage conditions, mitigating viability loss over time. Overall, this study showed that the VSC coating serves as a multifunctional stabilization technology that provides mechanical, osmotic, and oxidative stress protection. Its ability to improve probiotic survival under harsh conditions enables its practical and scalable use in formulations and enhances stability.