The elastic moduli of simulated dry process fuels with varying composition and density were measured in order to analyze the mechanical properties of a dry process fuel pellet. Resonant ultrasound spectroscopy(RUS) which can determine all elastic moduli with one set of measurements for a rectangular parallelepiped sample was used to measure the elastic moduli of UO and simulated dry process fuel. The simulated dry process fuel showed a higher value of Young's modulus than UO due to the presence of metallic precipitates and solid solution elements in the UO matrix. The correlation between Young's modulus and porosity(P) of simulated dry process fuel was found to be 231.4-651.8 P (GPa) at room temperature. Dry process fuel with a higher burnup showed higher Young's modulus because total content of fission product element was increased.