Laboratory investigation was conducted to evaluat the mixing effects on organic removal efficiency to treat low-strength synthetic wastewater using modified anaerobic filter reactor combining anaerobic filter and upflow anaerobic sludge blanket. Using the modified process the low-strength wastewater like municipal sewage could be treated with 85% T-COD removal efficiency at hydraulic retention time of 6 hours. At the constant organic loading of 0.5㎏ COD/㎥-day, the organic removal efficiency and effluent COD concentration are increased as influent COD concentration increased from 125 ㎎/ℓto 500 ㎎/ℓ. Mixing effects on organic removal efficiency are evident and optimum mixing speed is found as 50RPM. Placing the granular studge and media on which slime layer was pre-formed into the reactor seemed to be very effective in achieving short start-up period. Therefore the steady state was achived after 4 weeks and 1 week based on T-COD and S-COD, respectively.
This study was conducted to evaluate the effects of pressure and dissolved oxygen concentration on the activated sludge and to determine the optimum depth of deep shaft process. Some results from this study were summarized as follows. 1. It is considered that low sludge product in the activated sludge system maintaining high dissolved oxygen concentration is attributed to the increase of endogeneous respiration rate caused by the increase of aerobic zone in the sludge floc. 2. The increase of dissolved oxygen concentration does not affect to the increase of organic removal efficiency greatly and therefore the limiting factor is the substrate transfer into the inner part of floc. 3. The yield coefficient, Y is decreased in proportion to the increase of oxygen concentration. In this study, Y values arre ranged from 0.70 to 0.41 according to the variation of dissolved oxygen concentration from 18.0㎎/ℓ to 258 ㎎/ℓ. 4. The optimum depth of deep shaft process should be determined within the limits of non-toxicity to the microorganism and it is about 100m in this study.