검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경상분지 하양층군의 퇴적시기와 기원지 변화를 밝히기 위해 청송 세계지질공원의 지질명소인 백석탄(일직층), 만안자암(점곡층), 신성리(사곡층) 지역에서 쇄설성 저어콘에 대한 U-Pb 연령측정을 실시하였다. 일직층에서는 백악기 저어콘이 발견되지 않고 쥐라기와 트라이아스기의 저어콘이 대부분이며, 선캄브리아 시대의 저어콘은 드물게 산출된다. 반면 점곡층과 사곡층은 백악기와 쥐라기, 고원생대의 저어콘이 우세하며 유사한 연령분포를 보인다. 점곡층과 사곡층의 백악기 저어콘에서 각각 103.2±0.3 Ma와 104.2±0.5 Ma의 가장 젊은 가중평균연령을 구했다. 연구결과에 의하면 점곡층 및 사곡층의 퇴적시기는 앨비안에 해당된다. 쇄설성 저어콘의 연령분포는 일직층과 점곡층 사이에 기원지의 중요한 변화가 있었음을 지시한다. 일직층은 주로 주변의 관입암체에서 퇴적물이 공급된 것으로 보이지만, 점곡층과 사곡층은 일본 남서부의 쥐라기 부가대의 비교적 젊은 퇴적단위로부터 기원한 것으로 해석된다.
        6,700원
        2.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 몽골 흡수굴 호수 인근에서 발견되는 설치류(땅다람쥐) 서관 구조의 일반적인 특징을 조사하였다. 설치류 서관 구조는 직선이거나 약하게 휘어진 형태이며 완만하게 경사진 형태롤 보인다. 단면상의 모양은 원형 내지는 타원형이고 지름은 주로 8-10 cm의 크기를 보인다. 버려진 서관 구조들은 대부분 토양이나 자갈에 의해 수동적으로 채워져 있다. 연구 지역에서 관찰되는 서관 구조의 크기와 구조적인 특징들은 이전에 한국에서 보고된 플라이스토세 후기 서관 구조들과 매우 유사하므로 한국에서 발견되었던 서관 구조들도 땅다람쥐과에 의해 형성된 것으로 판단된다. 하지만 서관 구조 충진물의 차이로 판단할 때 당시 한국의 연평균 강수량이 몽골에 비해 훨씬 높았던 것으로 생각된다.
        4,000원
        3.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서 인공 분기공을 이용해 Giggenbach bottle 법의 적정성을 평가하고, 관련된 전처리 및 분석기술을 확립했다. 인공 분기공은 CO2, CO, H2S, SO2, H2, CH4, HCl, HF, N2의 조합으로 이루어졌고, 각 성분의 유속을 조절해 다양한 조성을 지닌 분기공 가스를 만들었다. 분기공 가스는 NaOH 포집용액이 담긴 병을 사용해 채취했다. CO, H2, CH4의 비용존 가스는 채취병의 빈 공간에 축적되고, CO2, SO2, HCl, HF의 산성가스는 포집용액에 용해된다. H2S 는 다른 산성가스처럼 포집용액에 용해되나, 카드뮴 아세테이트를 첨가한 경우 Cd2+와 반응해 CdS로 침전된다. 비용존 가스는 가스 크로마토그래피를 사용해 분석했다. 한편 포집용액에 생긴 CdS 침전물은 여과장치를 사용해 수용액과 분리시킨 후, H2O2 수용액과 반응시켜 CdS 침전물에 결합되어 있는 황화염을 황산염으로 산화시켰다. 또한 침전물이 분리된 포집용액에 H2O2 용액을 넣어 아황산염을 황산염으로 산화시켰다. 이런 전처리를 거친 시료는 이온 크로마토그래피를 사용해 분석했다. 포집용액에 용존된 CO2는 전처리 없이 총유기-무기탄소분석기를 사용해 측정했다. 측정된 화산가스의 농도는 인공 분기공에서 설정된 유속과 비례했고, 이는 Giggenbach bottle 법이 화산가스 관측에 유용하게 적용될 수 있음을 나타낸다. 또한 본 연구에서 제시된 전처리 및 분석법은 화산가스 측정의 정확도 및 재현성을 향상시킬 것으로 기대된다.
        4,300원
        4.
        2020.12 KCI 등재 서비스 종료(열람 제한)
        백두산 북동쪽으로 약 25 km 떨어져있는 지역의 마이오세 현무암(황송푸 현무암, 20 Ma)에 대한 주 성분원소와 미량원소, Sr-Nd 동위원소 조성에 대한 연구가 수행되었다. 황송푸 현무암은 비현정질 암석으로 Na2O+K2O=3.5~4.7 wt.%, MgO=9.9~11.1 wt.%을 보인다. Mg 성분이 풍부한 감람석(Mg#=75~86)과 단사휘석 (Mg#=72~85), Ca성분이 풍부한 사장석 미반정을 함유하고 있다. 이 현무암은 경희토류원소 부화가 나타나는 해양도현무암과 유사한 미량원소 패턴을 보이고, 높은 Cr(394~479 ppm)과 Ni(389~519 ppm) 성분, Nb-Ta 부화 이상치, Rb과 Ba을 포함하는 LILE가 부화되어 있는 특징을 보인다. 이러한 조직과 주성분원소/미량원소 조성 데이터는 황송푸 현무암이 알칼리 마그마 계열에 속하는 원시적인 마그마임을 나타낸다. 황송푸 마그마는 상승하는 도중에 분별결정작용, 지각오염, 마그마혼합과 같은 분화작용을 거의 경험하지 않은 액상선 환경 에서 고화된 암석으로 이는 황송푸 현무암이 부분용융이 일어났던 맨틀에서의 특성을 지니고 있음을 반영한다. 황송푸 현무암의 높은 (Gd/Yb)sample/(Gd/Yb)PM 비율(2.8~3.5)은 황송푸 현무암이 판내부 환경에서 형성된 마그마로써 석류석이 존재하는 맨틀에서 페리도타이트의 낮은 부분용융(3~5%)으로 형성되었다. BSE보다 모두 높은 143Nd/144Nd와 87Sr/86Sr 성분을 보이는 황송푸 현무암은 이 지역 아래 부화된 맨틀영역이 존재한다는 것을 의미한다. 황송포 현무암은 과거(ancient)의 태평양판 섭입대에 의해 공급되어 재활용된 해양지각 혹은 대륙지각으로 교대작용을 경험한 맨틀에서 부분용융에 의해 형성되었다.
        5.
        2013.06 KCI 등재 서비스 종료(열람 제한)
        나노크기 매킨나와이트(nanocrystalline mackinawite, FeS)는 높은 비표면적을 지닌 반응성 높은 광물로, 오염된 지하수나 토양의 복원을 위해 널리 사용된다. 또한 매킨나와이트는 혐기성 부식반응에 대해 열역학적으로 안정하고, 황산염 환원미생물의 대사에 의해 재생된다는 장점이 있다. 하지만 매킨나와이트 나노입자는 지하수 흐름에 의해 멀리 확산되거나 입자집적이 일어나 대수층 공극을 막는다. 따라서 현장복원을 위한 투과반응벽(permeable reactive barrier)의 설치를 위해서 나노크기 매킨나와이트에 대한 변형이 필요하다. 이를 위해 본 연구에서는 코팅법을 활용해 매킨나와이트 나노입자를 알루미나(alumina, Al2O3) 및 활성알루미나(activated alumina) 표면에 증착시켰다. 매킨나와이트의 코팅량은 pH에 따라 현저히 달랐으며, 두 종의 알루미나 모두 약 pH 6.9에서 최대 코팅이 관찰되었다. 이 pH에서 알루미나와 매킨나와이트는 반대의 표면전하(surface charge)를 띠어 두 광물 간 정전기적 인력이 발생하고, 이로 인해 효율적인 코팅이 일어났다. 이 pH에서 알루미나 및 활성 알루미나에 의한 코팅량은 각각 0.038 mmol·FeS/g과 0.114 mmol·FeS/g이었다. 혐기성 조건에서 코팅되지 않은 알루미나 및 활성 알루미나, 그리고 최적 pH에서 코팅된 알루미나 및 활성 알루미나를 사용해 아비산염(arsenite) 흡착실험을 수행했다. 코팅되지 않은 활성 알루미나는 코팅되지 않은 알루미나와 비교해 단위질량당 높은 아비산염의 제거를 보여주었으나, 매킨나와이트의 코팅에 의한 흡착량 증가를 보이지 않았다. 활성 알루미나는 높은 비표면적을 지니고 있어 반응성 높은 수산화작용기(hydroxyl functional group)가 다수 존재했고, 이로 인해 코팅된 매킨나와이트에 의한 아비산염의 제거가 중요하지 않았다. 반면 알루미나는 매킨나와이트 코팅에 의해 향상된 아비산염의 제거율을 보였는데, 이것은 알루미나에 존재한 수산화작용기가 아비산염과의 표면배위결합(surface complexation)에 소모되고, 코팅된 매킨나와이트에 의한 부가적인 흡착이 일어났기 때문이다. 코팅된 알루미나는 이전에 연구된 코팅된 실리카와 비교해보면 단위 비표면적당 매킨나와이트의 코팅량이 약 8배 높았으며, 더 높은 아비산염에 대한 흡착력을 보였다. 따라서 본 연구의 결과는 코팅된 알루미나는 투과반응벽의 설치에 적합한 물질이고, 특히 아비산염으로 오염된 지하수의 정화에 유용하게 적용될 수 있음을 지시하고 있다.
        6.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        나노 크기 매킨나와이트(FeS)는 높은 환원력, 흡착성, 그리고 비표면적을 지니고 있어, 염소유기물의 분해와 중금속 및 비금속의 제거에 유용하다. 하지만 매킨나와이트 나노입자는 콜로이드 안정성(colloid stability)의 변화로 지하수 흐름에 따라 쉽게 확산되거나, 입자집적(particle aggregation)에 의해 대수층의 공극을 막을 수 있다. 따라서 투과반응벽(permeable reactive barrier)에 적용하기 위해서 적절한 공학적 변형이 필요하다. 본 연구에서는 코팅법을 적용해 나노크기 매킨나와이트를 변형시킴으로써 본래의 반응성을 유지하고 또한 경제적인 투과반응벽의 설치에 활용하고자 한다. 이를 위해 화학적 처리를 하지 않은 규사(non-treated silica sand, NTS)와 화학적 처리에 의해 불순물이 제거된 규사(chemically treated silica sand, CTS)를 사용해 매킨나와이트를 코팅시켰다. 두 규사 모두 약 pH 5.4에서 매킨나와이트가 최대로 코팅되었으며, 이 pH는 (1) 매킨나와이트의 용해도, (2) 규사 및 매킨나와이트의 표면전하(surface charge)에 의해 영향받았다. 최적 pH에서 NTS와 CTS에 의한 코팅량은 각각 0.101 mmol FeS/g, 0.043 mmol FeS/g으로, NTS 표면에 존재하는 산화철 등의 불순물에 의해 매킨나와이트의 코팅이 현저히 증가했다. 한편 혐기성 조건에서 코팅되지 않은 규사 2종과 최적 pH에서 코팅된 규사 2종을 이용해 아비산염(arsenite)의 흡착실험을 실시했다. pH 7에서 코팅되지 않은 NTS와 코팅된 NTS에 의한 아비산염의 상대적 제거율은 아비산염의 초기 농도에 따라 달라졌다. 낮은 농도에서 코팅되지 않은 NTS가 높은 아비산염의 제거율을 보였으나, 높은 농도에서는 코팅된 NTS가 상대적으로 높은 제거율을 보였다. 이런 차이는 아비산염은 낮은 농도에서 규사 표면에 존재하는 산화물과의 표면배위결합(surface complexation)에 의해 제거되었고, 높은 농도에서 코팅된 매킨나와이트와 반응해 황화비소(arsenic sulfides)로 침전되었기 때문이다. pH 7에서 코팅된 NTS에 비교해 코팅된 CTS는 현저히 낮은 아비산염 제거율을 보였는데, 이는 CTS의 상대적으로 낮은 매킨나와이트 코팅량에 기인했다. 따라서 코팅된 NTS는 코팅된 CTS보다 아비산염의 제거를 위한 투과반응벽의 설치에 더 적합한 물질이며, 특히 아비산염의 오염도가 심한 지하수의 복원에 유용하게 적용될 수 있다.