This study was conducted to clarify the effect of high temperature during winter period(autumn sowing) and spring sowing on yield, quality and growth and development in barley. The varieties used for the experiments were heenchalssalbori and keunalbori 1 having a strong spring habit characteristics. In spring sowing treatment, spikelet differentiation was proceeded rapidly and tillering was proceeded slowly compared to the development stage, because the barley sowed at spring is cultivated in high temperature and long day conditions from sowing to spikelet differentiation stage compared with autumn sowing(control). And in high temperature treatment during winter period, like spring sowing, tillering was inhibited compared to the development stage. The number of grain per panicle and the period required to heading stage from spikelet differentiation were reduced largely at spring sowing, because spring sowing treatment was conducted in high temperature and long day condition compared with autumn sowing and high temperature treatment during the period from spikelet differentiation to heading stage. Meanwhile in spring sowing treatment, average temperature during ripening stage was higher than the autumn sowing and high temperature during winter, because heading stage was so late. After all, starch, amylose content and grain weight were reduced while protein content was relatively increased in spring sowing treatment due to difference of average temperature of ripening stage. These changes affected the decrease of viscosity of peak, trough, breakdown and the increase of setback viscosity
While going into troops for writing in the vignette style(小品文) in opposition to the Classical Chinese(古文), Yi Ok stopped by Songgwangsa Temple in Wanju. The things he felt during this stop were recorded in the Temple Chapter ( 寺觀) written in 1795. Therefore, the present dissertation evaluates the Songgwangsa Temple of the time based on this Temple Chapter . Data in the Temple Chapter draws attention to the fact that it records the layout of the temple in detail. Thus the study was able to confirm the change in layout by reviewing relevant records about repair. This reveals that the form of layout in general has been maintained although there were changes involving the relocation of the buildings and their names. Furthermore, the original Buddhist building was changed to a quarter for the monks. Also, in terms of layout after the 18th century, there are frequent name changes of the Myeongbujeon(冥府殿) and Nahanjeon(羅漢殿). After two repairs, in order to find the appearance of a Daeungjeon(Main Buddhist hall) with a two-storied structure of five bays at the front, the study evaluated the Geugnakjeon at Muryangsa Temple and the Daeungbojeon at Magoksa Temple. The evaluation revealed that the ‘Jeol’ used in the Temple Chapter were small pillars erected on a ridgepole just like the Geugnakjeon at Muryangsa Temple, and that the angle rafters were installed to corner bays in rectangular form. The intellectual Yi Ok left behind invaluable architectural data that reveals the Songgwangsa Temple of the 18th century.
We investigated the changes in the physicochemical properties of wheat grains during ripening stage to determine the effect of the rise in average temperature on that of wheat grains. The treated average temperatures were 18.3°C(control), 19.9°C(1.6°C increase), 21.5°C(3.2°C increase) in artificial climate room from heading time to harvest. Results showed that the ripening period from heading to maturity tended to be shorter during higher temperature treatment condition. The 1,000-grain weight, grain width, number of florets per spike, and number of grains per spike decreased as the ripening period was shortened. Gelatinization properties were affected by high temperature due to the reduction of starch and amylose contents. As the grain filling period was shortened by high temperature treatments, the crude protein content increased. As the grain filling period was shortened by 6 days, the starch and amylose contents decreased by 10.8% and 5.4%, respectively. However, the crude protein content increased by 1.7% in such a condition. Starch content showed positive correlations between amylose and breakdown. Meanwhile, it showed negative correlations between electric conductivity of leaching water from seeds, crude protein content, peak viscosity, trough viscosity, final viscosity, and setback.
This experiment was conducted to clarify the effect of the high temperature on physicochemical properties of barley kernels during ripening stage. High temperature treatment was lasted from each 10, 17 and 24 days after heading(DAH) until the harvest time at 21oC, 24oC, 27oC in artificial climate room. The results showed that ripening period from heading to maturity was tend to be shorter at higher temperature treatment condition and at longer duration treatment condition. and 1000-grain weight was decreased as the ripening period shortened. Furthermore, gelatinization properties was changed by high temperature due to the reduction of starch and amylose contents. As the shortening of grain filling period by a high temperature treatment, the protein content was increased. In the 10 DAH at 27oC treatment, the grain filling period was shortened by 9 days. The starch contents was reduced by 5.7 %, and the protein content was increased by 5.6 % in a such condition. Protein contents was showed negative correlations with amylose, starch contents and gelatinization properties, respectively. Starch contents, however, showed positive correlations with amlyose content and gelatinization properties.
It was believed that Jeongnimsa temple was built after the capital was moved from Gongju to Buyeo. It was confirmed that it was built A.D. 625 ± 20 by conducting a paleomagnetic analysis on the fireplace, which was recently found at the bottom of Jungmunji(middle gate). Consequently, it is assumed that the temple was built in the early 7th century unlike the previous point of view. Therefore, this study evaluated if the fireplace at the bottom of Jungmunji was found at the geological stratum representing the Jeongnimsa temple. Moreover, the study examined when the fireplace at the bottom of Jungmunji was constructed on the soil stratum. It is possible that the fireplace was built in the early 7th century as shown in the paleomagnetic analysis. However, when we compared the soil strata of the Jungmunji and the existing five-story stone pagoda, it showed that the ground was prepared differently and they were built over a fairly long period of time. Furthermore, I discovered that there was a wooden pagoda under the five-story stone pagoda by examining the soil strata map. Therefore, previous studies evaluated the arrangement of auxiliary buildings of Jeongnimsa temple and concluded that it was built in the early 7th century. It is hard to determine when the temple was built based on the arrangement of auxiliary buildings, because it takes a long time to build a temple and auxiliary buildings can be relocated during this long construction period. Rather, we have to admit that there are various arrangement patterns through minor changes in buildings from the one pagoda and one main building(Geumdang) arrangement.