초음속 혹은 극초음속 미사일의 레이돔은 공력 가열로 인해 과도한 열유속에 노출된다. 또한 미사일은 발사 후 속도와 고도가 변화 하면서 이에 따라 레이돔에 가해지는 열유속이 변화한다. 이러한 열부하에 의해 레이돔의 온도가 소재의 허용 온도를 초과하면, 레이 돔은 레이더를 보호하는 기능을 상실하게 된다. 따라서 비행 시나리오에 따른 레이돔의 열전달 특성을 고려하여 레이돔을 설계해야 한다. 본 연구에서는 준-비정상 기법을 적용하여 가상의 비행 시나리오에서의 레이돔의 열전달 특성을 분석하고 준-비정상 기법의 정 확도와 효율성을 평가하였다. 준-비정상 기법을 적용하여 시간에 따른 레이돔 외벽의 열유속과 온도 분포를 도출하였으며, 15초 이후 레이돔 외벽의 온도가 소재의 허용 온도 이상으로 가열되는 부분이 있는 것을 확인하였다. 또한 준-비정상 기법을 통해 도출된 결과 와 비정상 해석 결과를 비교하여 레이돔 평균 온도 측면에서 15% 이내의 오차로 예측할 수 있고 해석 소요 시간은 75%가 단축되는 것 을 확인하여 준-비정상 기법의 효율성을 입증하였다.
당화효소와 단백질분해효소의 생산능력이 높고 향도 좋은 Rhizopus japonicus T2와 밀가루로써 누룩을 제조할 때에 당화효소와 단백질분해효소의 생산을 위한 배양조건을 검토하였다. 날밀가루로 누룩을 만들었을 때에는 가열처리 한 밀가루로 만들었을 때보다 당화효소의 생산은 현저하게 높아졌으나 산성 protease의 생산은 감소하였다. 밀가루에 0.5%의 염산을 함유하는 물을 급수했을 때에는 당화효소와 중성 protease의 생산이 감소하였다 당화효소와 단백질분해효소의 생산에 가장 적합한 급수비율은 밀가루에 대하여 28%이었다. 곰팡이를 접종한 후 즉시 성형을 하는 것보다 10∼20시간 전배양을 한 후에 성형을 하는 것이 당화효소의 생산에 좋았고 단백질분해효소의 생산은 성형을 하지 않은 것이 좋았다. 당화효소 생산의 최적온도도 28℃이었고 단백질분해효소 생산의 최적온도도 28℃이었다. 28℃에서 배양할 때에 당화효소 생산을 위하 최적배양시간은 36∼72시간이었고 단백질분해효소 생산을 위 한 최적배양시간은 36시간이었다.