검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiO2 nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The TiO2 nanowires were grown at a high density on Si(100) at 510˚C, which is near the complete decomposition temperature (527˚C) of the Ti precursor (Ti(O-iPr)2(dpm)2). At 470˚C, only very thin (< 0.1μm) TiO2 film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to 550˚C and 670˚C, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The TiO2 nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The TiO2 nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow TiO2 nanowires, which hold significant promise for various photocatalysis and solar cell applications.
        4,000원
        2.
        2009.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene has been effectively synthesized on Ni/SiO2/Si substrates with CH4 (1 SCCM) diluted in Ar/H2(10%) (99 SCCM) by using an inductively-coupled plasma-enhanced chemical vapor deposition. Graphene was formed on the entire surface of the 500 nm thick Ni substrate even at 700 ˚C, although CH4 and Ar/H2 gas were supplied under plasma of 600 W for 1 second. The Raman spectrum showed typical graphene features with D, G, and 2D peaks at 1356, 1584, and 2710 cm-1, respectively. With increase of growth temperature to 900 ˚C, the ratios of the D band intensity to the G band intensity and the 2D band intensity to the G band intensity were increased and decreased, respectively. The results were strongly correlated to a rougher and coarser Ni surface due to the enhanced recrystallization process at higher temperatures. In contrast, highquality graphene was synthesized at 1000 ˚C on smooth and large Ni grains, which were formed by decreasing Ni deposition thickness to 300 nm.
        4,000원
        3.
        2008.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the light-emitting diode (LED) characteristics of core-shell CdSe/ZnS nanocrystal quantum dots (QDs) embedded in TiO2thin films on a Si substrate. A simple p-n junction could be formed when nanocrystal QDs on a p-type Si substrate were embedded in ~5 nm thick TiO2 thin film, which is inherently an n-type semiconductor. The TiO2 thin film was deposited over QDs at 200˚C using plasma-enhanced metallorganic chemical vapor deposition. The LED structure of TiO2/QDs/Si showed typical p-n diode currentvoltage and electroluminescence characteristics. The colloidal core-shell CdSe/ZnS QDs were synthesized via pyrolysis in the range of 220-280˚C. Pyrolysis conditions were optimized through systematic studies as functions of synthesis temperature, reaction time, and surfactant amount.
        4,000원