검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 71

        61.
        2004.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원자력발전소에서 발생하는 이온교환수지와 가연성잡고체 혼합폐기물을 유리화하기 위하여 유도 가열식 저온용융로를 이용한 실증시험을 수행하였다. 금속 티타늄 고리(Ti-ring)를 이용한 유리의 초기점화에 필요한 에너지는 약 290 kWh로 평가되었다. 혼합폐기물의 투입 중 고주파발생기의 출력은 160∼190 kW로 임피던스는 0.55∼0.65 범위 내에서 안정적으로 유지되었다. 이온교환수지 단독투입 시 보다 가연성잡고체와 혼합 할 경우 CO 발생농도는 1/40 정도로 낮아졌는데, 이는 1.8배 정도 높은 연소에너지를 갖는 가연성잡고체가 혼합폐기물의 완전연소를 유도한 것으로 평가되었다. 혼합폐기물의 공급량에 적당한 최적 산소 버블링에 의해 유리 용탕 내부로의 미연폐기물의 함침은 발생하지 않았으며 유리 용탕은 지속적으로 공정 건전성을 유지하였다. 유리 용탕의 부피가 증가하는 팽창(swelling) 현상 때와 정상 일 때 발생가스를 측정, 비교한 결과 swelling 현상 때는 NO와 같이 환원성 가스의 농도 보다 산화성 기체인 의 농도가 높은 것으로 나타났다. 실증시험에 사용된 이온교환 수지와 가연성잡고체의 각각 투입량은 368kg과 751kg 이었으며, 74 정도의 감용비를 달성하였다.
        4,000원
        62.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        This study examined oyster shells on a laboratory scale to determine whether they could be used as a replacement for limestone (PCC: precipitated calcium carbonate) as a filler in the paper production process. The optimum PCC production conditions and phase conversion rate at laboratory scale and 10 kg pilot plant scale were compared. For the phase conversion rate of CaO, 86.4% of the oyster shell and 55.6% of the limestone were converted. 80.4% of 86.4% CaO from the oyster shell and 52.0% of 55.6% CaO from the limestone were converted to Ca(OH)2. 99.6% of the oyster shell Ca(OH)2 and 100% of the limestone Ca(OH)2 were converted to PCC at laboratory scale. Meanwhile, the PCC phase conversion rate of oyster shells using the pilot plant was found to be 96.2%. To examine the potential for commercialization, PCC made of oyster shells was used in paper factories H and M for the applicable tests. As a result, the tensile strength, elongation, and internal bond strength of the product using the PCC from the oyster shells were similar to those of the product of paper factory H. However, approximately 2% reduction in bulk, 2% reduction in whiteness, and 0.3% reduction in opacity were reduced in paper factory H. For the product of paper factory M, the pH of 12.5 exceeds the KS standard, and the viscosity and residue are significantly higher than those of the product paper factory M. This study showed that the PCC phase conversion rate for oyster shells is higher than that for limestone under the conditions of PCC manufacturing at laboratory and pilot plant scales. The PCC whiteness test results of 99% for the pilot plant PCC, 97% for the lab scale PCC, and 93% for the limestone PCC illustrate that oyster shells are a useful material for manufacturing PCC. Because each process requires different physical properties and particle conditions, although the same PCC obtained from the oyster shells was used in both factories, it was applicable in paper factory H but not in paper factory M. Therefore, in order to examine applicability of the oyster shell-derived PCC for paper manufacturing processes, additional research is required on the adjustment of the physical properties standard and uniformity particle.
        63.
        2016.02 KCI 등재 서비스 종료(열람 제한)
        This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely CO2 with a small amount of CH4 and N2O. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about 3,174,000 tCO2eq. To look at it by year, the biggest amount was about 877,000 tCO2eq in 2013. To look at it by region, Gyeonggido showed the biggest amount (about 163,000 tCO2eq annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about 154 kCO2eq annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.
        1 2 3 4