검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.11 구독 인증기관·개인회원 무료
        The PRIDE scale mechanical decladder is decladding apparatus for separating and recovering fuel material and cladding hull by horizontally slitting rod-cut. In order to enhance mechanical decladdng efficiency, the main requirements were considered as follows. Decladding of the fuel rods may be performed by rotation of three circular cutting blades inserted among the rollers arranged at 120° portion. In a mechanical decladder, a slitting assembly as a unit for slitting the cladding tube may include cutting blades for slitting and rollers for guiding extrusion of the cladding tube. Rotation of the cutting blades may be caused by the fuel rods being extruded from a plurality of rollers. Slitting intervals of rod-cuts having different diameters may be controlled by adding or removing a spacing plate between the cutting blade and a ranch bolt for fixing the slitting blade to the slitting assembly. An extrusion velocity with respect to the fuel rods may be controlled by a hydraulic pressure applied to the fuel rods. A force for cutting the fuel rods may be adjusted by controlling steel plates. Forces applied to a plurality of rollers may be generated by the hydraulic cylinder. The hydraulic pressure may be controlled by hydraulic pressure controller. The PRIDE scale mechanical decladder mainly consists of auto feeding module, hydraulic cylinder module and blade module. A load cell was installed between the hydraulic cylinder and the extrusion pin to measure the decladding force and slitting velocity, and a data acquisition system capable of obtaining data by using the RSC 232 was constructed. Also, the control panel can control the forward and backward movement of the extrusion pin, the hydraulic flow rate, and the hydraulic velocity. In the mechanical decladding test, 40 pieces of simulated rod-cuts were loaded in two auto feeding basket and slit by utilizing the 3-CUT blade modules in the housing, and hulls and simulated pellets were collected in the collection container. As a result, 80 pieces of simulated rodcut (brass pellets + Zry4 tube) were slit continuously without any problem. About 35 min was required to slit 80 rod-cuts and average decladding force was 260 kg. The decladding force of the ceramic simulated rod-cuts (castable) requires 25 kg less force than the brass pellets. Therefore, it is estimated that the spent fuel rod-cut can be fully split into three pieces using the mechanical decladder.
        2.
        2023.05 구독 인증기관·개인회원 무료
        An important goal of dismantling process is the disassembling of a spent nuclear fuel assembly for the subsequent extraction process. In order to design the rod extractor and cutter, the major requirements were considered, and the modularization design was carried out considering remote operation and maintenance. In order to design the rod extractor and cutter, these systems were analyzed and designed, also the concept on the rod extraction and cutting were considered by using the solid works tool. The main module consists of five sub-modules, and the function of each is as follows. The clamping module is an assembly fixing module using a cylinder so that the nuclear fuel assembly can be fixed after being placed. The Pusher module pushes the fuel rods by 2 inches out of the assembly to grip the fuel rods. The extraction module extracts the fuel rods of the nuclear fuel assembly and moves them to the consolidation module. The consolidation module collects and consolidates the extracted fuel rods before moving them to the cutting device. And the support module is a base platform on which the modules of the main device can be placed. The modules of level 2 can be disassembled or assembled freely without mutual interference. For the design of fuel rods cutter, the following main requirements were considered. The fuel rod cut section should not be deformed for subsequent processing, and the horizontally mounted fuel rods must be cut at regular intervals. The cutter should have the provision for aligning with the fuel rod, and the feeder and transport clamp should be designed to transfer the fuel rods to the cutting area. The main module consists of 6 sub-modules, and function of each is as follows. The cutting module is a device that cuts the fuel rods to the appropriate depth for notching. The impacting module is a device that impacts the fuel rods and moves them to the collection module. The transfer module is a device that moves the fuel rods to the cutting module when the aligned fuel rods enter the clamp module. The clamping module is a device to clamp the fuel rods before moving them to the cutting module. The collection module is a container where the rod-cuts are collected, and the support module is a base platform on which the modules of the main device can be placed. The module of level 3 can be disassembled or assembled after the cutting module of level 2 is installed, and the modules of level 2 can be disassembled or assembled freely without mutual interference.
        3.
        2022.10 구독 인증기관·개인회원 무료
        Molten Salt Reactor, which employs molten salt mixture as fuel, has many advantages in reactor size and operation compared to conventional nuclear reactor. In developing Molten Salt Reactor, Offgas system should be properly designed since the fission products in off-gas accelerates the corrosion in reactor structure materials and deteriorates the purity of liquid fuel. The design of off-gas system therefore requires the preliminary study of the behavior of evolved fission products in off-gas units and the development of off-gas model is crucial in developing such system. In this study, we corrected the off-gas illustrative model proposed by ORNL (Nuclear Engineering and Design, vol 385(15) 111529, 2021) by employing physically consistent concept of capture rate of fission product and holdup. For the application of the corrected off-gas model to Chloride-based 6 MW Molten Salt Reactor, major fission products were firstly determined from OpenMC based neutronics calculation and chain reaction related to the major fission products were defined. Based on these data, the holdup behavior of fission products in off-gas units (decay tank, caustic scrubber, Halide trap, H2O trap and charcoal bad) were investigated.
        4.
        2022.10 구독 인증기관·개인회원 무료
        Dry head end process is developing for pyro-processing at KAERI (Korea Atomic Energy Research Institute). Dry processes, which include disassembling, mechanical decladding, vol-oxidation, blending, compaction, and sintering shall be performed in advance as the head-end process of pyro-processing. Also, for the operation of the head-end process, the design of the connecting systems between the down ender and the dismantling process is required. The disassembling process includes apparatus for down ender, dismantling of the SF (Spent Fuel) assembly (16×16 PWR), rod extraction, and cutting of extracted spent fuel rods. The disassembling process has four-unit apparatus, which comprises of a down ender that brings the assembly from a vertical position to a horizontal position, a dismantler to remove the upper and bottom nozzles of the spent fuel assembly, an extractor to extract the spent fuel rods from the assembly, and a cutter to cut the extracted spent fuel rods as a final step to transfer the rod-cuts to the mechanical decladding process. An important goal of dismantling process is the disassembling of a spent nuclear fuel assembly for the subsequent extraction process. In order to design the down ender and dismantler, these systems were analyzed and designed, also concept on the interference tools between down ender and dismantler were considered by using the solid works tool.
        5.
        2022.05 구독 인증기관·개인회원 무료
        In KAERI, the nuclide management technology is currently being developed for the reduction of disposal area required for spent fuel management. Among the all fission products of interest, Cs, I, Kr, Tc are considered to be significantly removed by following mid-temperature and high-temperature treatment, however, a difficulty of spent-fuel thermal treatment experiment limits the development of such thermal treatment. In this study, we applied our previously developed two-stage diffusion release model coupled to UO2 oxidation model to the development of optima thermal treatment scenario. Since the formation of cesium pertechnetate should be avoided and the fission release behavior is considerably affected by the extent of oxygen, we obtained oxygen-content dependent model parameters for two-stage fission release model and applied the model to the evaluation of fission release behavior to different oxygen content and thermal treatment procedure. It was found that the developed fission release model closely describes the experimental behavior of fission product of interest, implying a validity of model prediction and the thermal treatment condition reducing the chemical reaction between cesium and technetium could be developed.
        6.
        2022.05 구독 인증기관·개인회원 무료
        Dry head end process is developing for pyro-processing at KAERI (Korea Atomic Energy Research Institute). Dry processes, which include disassembly, mechanical decladding, vol-oxidation, blending, compaction, and sintering shall be performed in advance as the head-end process of pyroprocessing. An important goal of the head-end process is the fabrication of a proper feed material for the subsequent electrolytic reduction process. In the vol-oxidation process, the pellet type-SFs are pulverized by an oxidation under an air-blowing condition, and some volatile fission products are removed from the produced powders by using an air flow. After blending, the U3O8 powders are moved to a compactor of compaction process to obtain U3O8 porous pellets. In the fine powders removal system connected with compactor, for the improved performance of oxide reduction process coupled to dry head-end process, the removal/recovery system for fine powders potentially attached to the surface of oxide reduction raw material was developed and applied to the removal of fine powders from green pellets fabricated in dry head-end process. The removal efficiency of fine powders was also verified using porous U3O8 pellets in the fine powders removal system.