우리나라 여러 해양환경 지역으로부터 확보한 370주의 해양세균, 균류, 미세조류로부터 기초생 리활성(항산화, 항염, 항균, 항암, 항바이러스)을 조사하여 채집지, 분리원, 종(種) 수준에서의 활성결과를 비교하였다. 해양세균의 경우, 일반적으로 유용성이 많이 알려진 Streptomyces 속 과 Bacillus 속에 속하는 균주들이 두드러진 강한 효능이 관찰되었고, 주로 해양퇴적물로부터 유용한 자원을 분리할 수 있었다. 해양균류와 미세조류의 경우에도 종 특이적으로 활성이 강 하게 나타나는 결과를 확인할 수 있었고, 효능 특이적으로 활성을 보이는 결과도 얻을 수 있었 다. 이러한 결과를 바탕으로 추후 특정질병에 선택적으로 효능을 보이는 화학물질 연구 또는 자원 기반 연구 수행 시 유용성을 전제로 한 자원 확보 전략 수립과 산업 활성화를 위한 전 략소재로 우선적 접근이 용이할 수 있는 연구결과라 생각된다. 또한, 이들 결과를 해양바이오 뱅크를 통한 분양소재로 활용함으로써 학계, 산업계에서 활용하여 해양바이오산업 활성화에 좀 더 빠른 접근을 도울 수 있다고 생각한다.
Odonata are widely distributed in the global scale. Their distribution and abundance influenced by various environmental factors where they habit. Therefore, their distribution patterns reflect the differences of their habitat condition. In this study, we characterized the distribution patterns of Odonata in korean streams by considering various environmental condition such as geographical, landscape, hydrological, and water quality factors. Species Ischmura asiatica, Cercion calamorum, and Onychogomphus ringens displayed the highest abundance and occurrence frequency in the dataset. Among various environmental factors altitude was the most contributing factors on the distribution of Odonata species, and the species richness was higher at low land than at high land.
Sea Buckthorn (Hippophae rhamnoides L.) has been used in traditional medicine for the treatment of cough, indigestion, circulatory problems and pain. The associated anti-inflammatory effect of this agent is achieved via the inhibition of Nf-kB signaling, a property that has been demonstrated to effectively control the symptoms of various skin disorders, including atopic dermatitis. Accordingly, the purpose of this study was to assess the efficacy of Sea Buckthorn in reducing the production of lipopolysaccharide (LPS) activated nitric oxide (NO) by inhibiting the Nf-kB pathway, as measured by the symptoms of atopic dermatitis (AD) occurring secondarily to inflammation and immune dysregulation. Our data demonstrate that Sea Buckthorn significantly decreased the LPS-induced production of NO (p〈0.001). Atopic dermatitis was induced by repeated application of 2,4-dinitrochlorobenzene to the dorsal skin of mice. Topical application of 5% Sea Buckthorn extract improved the symptoms of AD, specifically reducing disease severity scores, scratching behaviors and epidermal thickness. When compared to the control group, animals treated with Sea Buckthorn exhibited increased serum IL-12 levels and decreased serum TNF-α, IL-4 and IL-5 levels. Such a modulation of biphasic T-helper (Th)1/Th2 cytokines may result in a reduction in serum IgE levels. Our findings suggest that mechanism of action of Sea Buckthorn in the treatment of AD is associated with a marked anti-inflammatory effect as well as an inhibition of Th2-mediated IgE overproduction via the modulation of biphasic Th1/Th2 cytokines. Such results suggest that topical Sea Buckthorn extract may prove to be a novel therapy for AD symptoms with few side effects.
Three biphenyl-degrading microorganisms were isolated from polluted soil samples in Sasang-gu, Busan. Among them, isolate DS-94 showing the strong degrading activity was selected. The morphological, physiological, and biochemical characteristics of DS-94 were investigated by API 20NE and other tests. This bacterium was identified as the genus Pseudomonas by 16S rDNA sequencing and designated as Pseudomonas sp. DS-94. The optimum temperature and pH for the growth of Pseudomonas sp. DS-94 were 25℃ and pH 7.0, respectively. This isolate could utilize biphenyl as sole source of carbon and energy. Biphenyl-degrading efficiency of this isolate was measured by HPLC analysis. As a result of biological biphenyl-degradation at high biphenyl concentration (500 mg/L), biphenyl-removal efficiency by this isolate was 73.5% for 7 days.
To investigate correlation between the distribution of marine bacteria and environmental characteristics in the surface sediments of Kamak Bay, chemical oxygen demand(COD), acid volatile sulfide(AVS), ignition loss(IL), total organic carbon(TOC), and total organic nitrogen(TON) were measured and analyzed at 7 stations in winter and summer. In winter, COD and AVS ranged from 13.45 mg/g to 30.06 mg/g(average: 23.58 mg/g) and from 0.03 mg/g to 1.04 mg/g(average: 0.63 mg/g), respectively. IL, TOC, and TON ranged from 8.03% to 11.41%(average: 9.41%), from 1.17% to 2.10%(average: 1.62%), and from 0.09% to 0.18%(average 0.15%), respectively. In summer, COD, AVS, IL, TOC, and TON ranged from 14.06 mg/g to 32.19 mg/g(average: 24.71 mg/g), from 0.03 mg/g to 1.11 mg/g(average: 0.66 mg/g), from 9.00% to 12.15%(average: 10.96%), from 1.27% to 2.12%(average 1.77%), and from 0.12% to 0.19%(average: 0.16%), respectively. These values were relatively higher than those in winter. Kamak Bay had high C/N ratio that might be resulted from the input of terrestrial sewage and industrial wastewater. The number of marine viable bacteria was 8.9 × 104 cfu/g in winter and 9.7 × 105 cfu/g in summer. The most abundant species were Pseudomonas spp., Flavobacterium spp., and Vibrio spp. in the surface sediments of Kamak Bay. It was found that the concentration of organic matters and viable bacterial cells in the inner part were relatively higher than those in the outer of Kamak Bay. The distribution of viable bacterial cells was closely influenced by environmental factors.
The aerobic photosynthetic bacterium, which produces bacterial carotenoids was isolated and identified from coastal marine environments. This bacterium was identified by 16S rDNA sequencing and designated as Erythrobacter longus SY-46. E. longus SY-46 was Gram negative and rod shape, and the optimal culture conditions were 25℃, pH 7.0, and 3.0% NaCl concentration, respectively. The carbon and nitrogen sources required for the optimal growth were lactose and tryptone, respectively. Fatty acid compositions of E. longus SY-46 were C18:1(78.32%), ν-linolenic acid(C18:3n9.12.15c: 3.83%), margaric acid(C17:0: 3.38%), palmitic acid(C16:0: 3.07%), and docosahexaenoic acid(C22:6n3: 2.21%). In addition, E. longus SY-46 showed the characteristic absorption peaks of bacterial carotenoids(in the region of 450 to 480 nm) and bacteriochlorophyll(770 to 772 nm). Major carotenoids of E. longus SY-46 were polyhydroxylated xanthophylls such as fucoxanthin and zeaxanthin.
High performance liquid chromatography (HPLC) was used for the determination of lignans, eleutherosides B and E, in Acanthopanax sessiliflorus fruits and their fermented wine. The lignans were quantified by a reversed-phase system using a gradient of H2O and acetonitrile as a mobile phase within 20 min. The analysis was successfully carried out within 20 min. The contents of eleutherosides Band E as main active principles of Acanthopanax species were measured in A. sessiliflorus fruits (1.15 and 8.49 μg/mg, respectively), their fermented wine (0.45 and 1.33 μg/mg, respectively) and wine residues (no detection).