Korea Atomic Energy Research Institute (KAERI) has been operating the Post Irradiation Examination Facility (PIEF) for fuel examinations. The facility has pools and hot cells for handling and examining fuel assemblies and rods. Among the hot cells, the second cell is for measuring rod internal pressure (RIP) and then cutting the rod to make samples for destructive tests. Currently, the cutting machine is broken, so it has to be replaced. Because the existing cutting machine consists of many parts and its size was quite a bit large to handle and treat for the radioactive waste disposal, the disassembly work has been performed to make it smaller using manipulators. The drawings of the cutting machine were reviewed and the disassembly tools were developed considering workability when the work performed at the hot cell using the manipulators. The large parts such as motor, mirror and cable, etc., were able to be disassembled and the machine size became so smaller that it could be easily handled for the disposal.
Korea Atomic Energy Research Institute (KAERI) has been operating the Post Irradiation Examination Facility (PIEF). The facility has many PIE equipment and one of them is a hydrogen analyzer for measuring hydrogen contents in Zr cladding of spent fuel. The cladding tube of fuel is oxidized in the core environment of high temperature and pressure and absorbs some of the hydrogen generated during the oxidation. The hydrogen content increases with the increase of burn-up, and causes hydriding of the material, which degrades the mechanical properties. Therefore, hydrogen content analysis of the cladding tube is required for the performance and integrity evaluation of spent fuel. In PIEF, the hydrogen analyzer extracts hydrogen gas from Zr cladding by the hot extraction method. The hydrogen gas flows with inert gas and oxidizes to H2O through a CuO reagent. Finally, an IR detector measures the hydrogen amount from the absorbed IR intensity at a specific wavelength. Because the equipment is in the glove box and has some consumable parts, the maintenance work was performed as a radiation work.
Korea Atomic Energy Research Institute (KAERI) has been operating the Post Irradiation Examination Facility (PIEF) for spent fuel. The facility has pools and hot cells for handling and examining fuel assemblies and rods. In the first hot cell, non-destructive tests such as visual inspection, defect detection, oxide layer thickness measurement, and gamma scanning are performed on a full-length fuel rod. Then, the fuel rod is transported to the next hot cell for measuring the rod internal pressure (RIP). After the RIP measurement, the fuel rod is cut by a cutting machine to make samples for destructive tests. Currently, the existing cutting machine is broken, so a new machine needed to be designed and manufactured. The major considerations for designing the cutting machine were convenience of remote handling and decontamination. The machine was modularized and its handling parts were designed to be easily controlled by manipulators. The cover was designed to prevent radioactive contamination of the surrounding area.
In case of damaged spent fuels, it would require additional treatment for their transportation and storage to capture the radioactive fission products in a defined space. The canning container for the damaged spent fuels is one way to seal the radioactive fission products inside the container. In the Post Irradiation Examination Facility (PIEF) of KAERI, the Quiver container has been introduced for canning damaged spent fuels from Westinghouse Sweden. The main container body has been manufactured for particle-tightness of spent fuel. In addition, drying equipment is being prepared for gas-tightness of spent fuel. The drying equipment can remove water and fill the inert gas inside the container. Before drying inside the container, we evaluated the volatile fission products inventory because volatile fission products could be released during the drying process. Despite assuming highly conservative hypotheses for the inventory remaining in damaged fuel rods, the amount that could be released during the drying process was less and dose rate levels around the evacuation piping system were low.