검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Purpose: The objective of this study was conducted to investigate the effects of rutin, buckwheat components on cell growth and anti-inflammation in adipocyte 3T3-L1 and human colon cancer cell SW-480. Methods: We cultured 3T3-L1 adipocyte and SW-480 colon cancer cell to confluence, at which time starvation was induced with SFM for 1 day. Cells were then cultured in medium containing 0, 25, 50, or 100 μmol/mL of rutin 3T3-L1 or 0, 10, 20, or 40 μmol/mL SW-480. Cell viability was measured using a cell viability kit. In addition, we examined the expression of mRNA related to inflammation. RT-PCR was used to quantity tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA levels. Results: Rutin significantly inhibited 3T3-L1 and SW-480 cell proliferation in a dose and time dependent manner. Rutin also significantly reduced the mRNA expression of IL-1β, IL-6 and TNF-α at the highest dose. In addition, rutin treatment caused a significant reduction in COX-2 and iNOS mRNA levels compared to the control group. Conclusion: Overall, our results suggest that rutin has the potential to reduce inflammation, and that these effects are greater during tissue-damaging inflammatory conditions.
        4,000원
        2.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Purpose: This study examined the effects of α-lipoic acid in diluted solvents on cell growth in 3T3-L1 cells according to the treated concentration and times. Methods: Adipocyte 3T3-L1 cell were cultured. Confluent cells underwent starvation with SFM for 1 day and then were cultured in a medium containing various concentrations 0, 100, 200, and 400 μmol/L of α-lipoic acid. The cell viability was measured using the EZ Cytox assay kit. In addition, the effect of α-lipoic acid of diluted solvents on the cell growth in 3T3-L1cells was examined according to the treated concentration and times. Results: The α- lipoic acid diluted ethanol inhibited cell proliferation in a dose and time dependent manner. The α-lipoic acid diluted ethanol induced adipocyte 3T3-L1 cells proliferation with an adipocyte inducer. In addition, α-lipoic acid inhibited adipocyte 3T3- L1 growth in a dose and time dependent manner (p<0.05). Conclusion: This study showed that a treatment with α-lipoic acid diluted ethanol inhibits cell growth of, adipocyte 3T3-L1 cells induced with an adipocyte inducer, (200 μmol/L of α- lipoic acid) treated for 48 hr.
        4,000원
        4.
        2015.07 서비스 종료(열람 제한)
        Plants have evolved elaborate innate immune systems against invading pathogens, such as bacteria, fungi, oomycetes, viruses and insects. Among them, intracellular immune receptors known as nucleotide-binding site and leucine-rich repeat (NB-LRR) play critical roles in effector-triggered immunity (ETI) regarding to plant defense. Here, we identified potential NB-LRR coding sequences from pepper genome using bioinformatics analysis and performed comparative analysis with Solanaceae plants. As a result, we identified 267, 443, and 755 NBS-encoding genes in the genome of tomato, potato, and pepper, respectively. These may indicate that the Solanaceae NB-LRRs were evolved through species-specific unequal-duplication event. Further phylogenetic and clustering analyses revealed that Solanaceae NB-LRRs were classified into the 14 subgroups with 1 TNL and 13 CNL types. We found that the genes in CNL-G1 and CNL-G2 subgroup were highly expanded compared to other subgroup showing a large portion of NB-LRR in pepper genome. Among 755 NB-LRRs in pepper genome, 623 were physically mapped on all 12 pepper chromosome pseudomolecules. Furthermore, a number of NB-LRRs in the same group were physically clustered by tandem array in the specific chromosome. Genome-wide identification of pepper NB-LRR family and their evolutionary analysis could provide an important resource for identification and characterization of genes for breeding of disease resistance crops.