Fermented halla gold kiwifruit (FHK) was prepared with Lactobacillus plantarum CK10, a bacterium derived from kimchi. We investigated the quality characteristics and antioxidative activity of madeleine added with FHK. The madeleine dough was prepared by mixing flour, sugar, baking powder, and then followed by adding salt, rum, different amount of the FHK (0, 1, and 3%) and butter. The total titratable acidity of madeleine increased significantly with the amounts of added FHK (p<0.05), while the pH value and total soluble solids showed the reverse trend. The color of madeleine became substantially redder with increasing amounts of FHK (p<0.05), and it appeared darker and less yellow at the same time. The total polyphenol contents of madeleines increased significantly with increasing amounts of FHK (p<0.05), but there was little difference in the total flavonoid content. When the antioxidant activities were measured in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH)- and 2,2’-azino-bis-3-ethylbenzothiazoline- 6-sulfonic acid-diammonium salt (ABTS)- radical scavenging, both measured activities of madeleines increased dramatically with added FHK in a dose-dependent manner. Our results suggested that the acidity, color, polyphenol content, and antioxidant activities of madeleines can be improved by adding the fermented gold kiwifruit.
Background : Osteoclasts as multinucleated cells originate from hematopoietic monocyte/ macrophage precursor cell, shows the bone absorption through the commitment, differentiation, fusion, and bone resorption stages by regulation of M-CSF and RANKL. It has been reported a significant negative correlation between the increase of oxidative stress and the bone density, and when RANKL reaction to the osteoclasts precursor cells is mainly generated ROS is due to increased activity of NADPH oxidase1 (NOX1), and these ROS act as a factor which promotes osteoclasts differentiation. Thus, RANKL signaling process is important that excessive osteoclast formation and differentiation inhibited through the regulation of each step. Methods and Results : F3570 ethanol extract showed relatively high activity at in-vitro antioxidant activity. F3570 water extract inhibited ROS generation in RAW 264.7 cells stimulated with H2O2 and RANKL, even at low concentrations. The inhibitory effect of osteoclast differentiation on F3570 water extract was confirmed that shown through NF-κB pathway, MAPK pathway including ERK and JNK. F3570 ethanol extract is considered to be regulated by the p38 MAPK and the other signaling pathway. Also, F3570 both water and ethanol extract were significantly reduced gene expression such as TRAP, calcitonin receptors and integrin β3 of RANKL-induced mature osteoclast in the bone resorption stage. Conclusion : Through this study, F3570 extract revealed an outstanding inhibitory effect and signaling mechanisms in osteoclast differentiation induced by RANKL. These results suggest that F3570 is bone diseases associated with aging or osteoporosis caused by menopause in an aging society is expected to be a superior candidate for the treatment or the prevention