본 연구에서는 국내에서 유통되는 식·약공용농산물의 잔 류농약 실태를 조사하기 위해 7품목 72건 대상으로 잔류 농약을 분석했다. 시료는 QuEChERS법으로 전처리한 후 GC-MS/MS, LC-MS/MS를 이용하여 분석했다. 식·약공용 농산물 총 7품목 72건 중 42건(58.3%)에서 잔류농약이 검 출되었으며, 검출된 농산물은 복분자 1건, 구기자 14건, 대 추 9건, 오미자 10건, 모과 1건, 생강 5건, 영지버섯 2건 이었다. 그 중 구기자 2건(11.8%), 오미자 1건(7.1%), 영 지버섯 2건(100%)에서 잔류농약 허용기준을 초과하여 검 출되었다. 검출농약은 43종으로 살균제 20종 75회, 살충제 23종 58회이었으며, 살균제 carbendazim 및 tebuconazole이 각각 11회로 가장 빈번하게 검출되었다. 허용기준을 초과 하여 검출된 농약은 acetamiprid, cadusafos, chlorpyrifos, flubendiamide, fluopyram, triazophos으로 모두 잔류농약허 용기준이 설정되지 않은 PLS 항목이었다. 결론적으로 잔 류농약 검사 건수, 검출률, 검출빈도를 종합적으로 고려해 볼 때 식·약공용농산물에 대한 지속적인 잔류농약 관리가 필요한 것으로 생각된다.
This study aimed to investigate pesticide residues in 160 stalk and stem vegetables marketed in Northern Gyeonggi-do. The QuEChERS method using GC-MS/MS and LC-MS/MS was employed to analyze the residues of 341 pesticides in the samples. The maximum or lower than the residue limit was recorded in 75 samples (46.9%), while 4 samples (2.5%) exceeded the maximum residue limit (MRL). Thirty-nine kinds of residual pesticides were detected including fungicides (14), insecticides (22), herbicides (2), and plant growth regulator (1). Carbendazim and pendimethalin were the most frequelntly detected pesticides. Fenitrothion, procymidone, and diazinon exceeded MRL in garlic chives, and Welsh onion. This indicated that these vegetables along with water celery should be constantly monitored.
본 연구는 2019년 1월 1일부터 전체 농산물에 확대 적용된 농약 허용물질목록관리제도(PLS)가 미치는 영향을 확인하기 위해 2018년부터 2020년까지 경기도 유통 농산물 검사 자료 28,693건을 대상으로 잔류농약 실태를 조사하였다. 전체 검사 실적 대비 기준 초과 비율은 2018년 1.0%, 2019년 1.2%, 2020년 1.2%로 나타났고, 잔류농약 검출 비율은 2018년 12.9%, 2019년 25.1%, 2020년 37.3% 로 증가하였다. 2019년 기준초과 114건 중 55건이 일률기준(0.01 mg/kg) 적용이었고, 2020년 기준초과 115건 중 66 건이 일률기준 적용이었다. 이를 개선하기 위해서는 비의 도적 오염, 미등록 작물에 관행적 사용, 부정 농약에 대한 관리가 필요해 보인다. Fluquinconazole은 비의도적 오염이 원인이었고, diazinon, chlorothalonil, methabenzthiazuron은 미등록 작물에 관행적 사용이 원인이었다. Chinomethionat 은 과거에 폐기된 농약 성분으로 밀수 농약 사용이 원인이었다. 본 연구 결과와 이후 모니터링 자료는 앞으로 제도 보완 및 현장 관리 강화를 위한 기초자료로 활용될 수 있을 것이다.
Long-term ultraviolet (UV) exposure accelerates the phenomenon of skin photo-aging by activating collagenase and elastase. In this study, we aimed to investigate the effects of a combination of grapefruit and rosemary extracts (cG&Re) on UVB-irradiated damage in HaCaT cells and dorsal mouse skin. In HaCaT cells, cG&Re recovered UVB-reduced cell viability and inhibited protein expression of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases (p-Erk), c-Jun N-terminal kinases (p-JNK), and a class of MAPKs (p-P38). Also, cG&Re suppressed UVB-induced collagen and elastin degradation by decreasing matrix metalloproteinases (MMPs) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) expression, which is a transcription factor. Similar results were observed in dorsal mouse skin. Taken together, our data indicate that cG&Re prevent UVB-induced skin photo-aging due to collagen/elastin degradation via activation of MAPKs, MMPs, and the NF-κB signaling pathway in vitro and in vivo.
Ultraviolet (UV) radiation is associated with the development of extrinsic skin aging. We performed in vivo assays in order to investigate the protective effect of a combination of grapefruit and rosemary extracts (cG&Re) on UVB-induced skin aging. The results indicated that cG&Re displayed elastase inhibitory activity in a dose-dependent manner. Topical application of cG&Re mitigated photo-aging related lesions such as skin erythema and thickening in photo-aged BALB/c mice dorsal skin, by preventing UVB-induced collagen degradation. Immunohistochemical analyses revealed that cG&Re stimulated SIRT-1 expression, and suppressed MMP-1 and IL-1β expression. It was observed that expression of MMP-1 and -13 mRNA was downregulated in the cG&Re-treated group. Furthermore, cG&Re treatment drastically suppressed protein expression of MMP-1 and regulated the phosphorylation of p-38 kinase. As expected, oral administration of cG&Re resulted in the same SIRT-1, MMP-1, and IL-1β expression patterns observed upon topical application of cG&Re in the UV-induced mice model. Overall, the current results demonstrated that cG&Re attenuated both the downregulation of MMP-1 expression and up-regulation of SIRT-1 expression, as well as decreased phosphorylation of MAPK in UVB-induced skin ageing mice model, suggesting that cG&Re might be used as an internal food ingredient for beauty-purposes as well as a functional food material.
The present study set out to investigate the adsorption of Cd(II) ions in an aqueous solution by using Peanut Husk Biochar (PHB). An FT-IR analysis revealed that the PHB contained carboxylic and carbonyl groups, O-H carboxylic acids, and bonded-OH groups, such that it could easily adsorb heavy metals. The adsorption of Cd(II) using PHB proved to be a better fit to the Langmuir isotherm than to the Freundlich isotherm. The maximum Langmuir adsorption capacity was 33.89 mg/g for Cd(II). The negative value of ΔGo confirm that the process whereby Cd(II) is adsorbed onto PHB is feasible and spontaneous in nature. In addition, the value of ΔGo increase with the temperature, suggesting that a lower temperature is more favorable to the adsorption process. The negative value of ΔHo indicates that the adsorption phenomenon is exothermic while the negative value of ΔSo suggests that the process is enthalpy-driven. As an alternative to commercial activated carbon, PHB could be used as a low-cost and environmentally friendly adsorbent for removing Cd(II) from aqueous solutions.
The aim of this study was to investigate the nutrient removal using Mg-Sericite flocculant in the dyeing wastewater. Mg-Sericite flocculant was removed successfully > 98% of the Color, SS. COD and BOD in the dyeing wastewater at the following optimal Mg-Sericite dosage: 100 mg/L for Colour and SS, 300 mg/L for BOD and COD. The removal of TN and TP was obtained 92.00% with 50 mg/L and 87.80% with 100 mg/L Mg-Sericite dosage, respectively. These results was indicated that the amount of 0.79~1.31, 0.22~0.37, 0.5 and 0.16 mg/L Mg-Sericite was necessary for 1 mg/L removal BOD, COD, TN and TP, respectively. The biopolymer, Mg-Sericite, can be a promising flocculants due to its high efficiency and low dose requirements. In addition, Mg-Sericite does not contaminate treated wastewater, which can be recycled to reduce not only the cost and the demand for water but also the extra operational costs for reusing wastewater. This flocculation method is helpful to lower the wastewater treatment cost.