Molecular genetic approaches have advantages in investigating various physiological aspects of mushrooms. We have been engaged in developing genetic transformation system mainly in wood rot mushrooms. In this presentation, our recent trials to accelerate mushroom science beyond the post-genomic era will be presented. They include development of research tools both in forward and reverse genetics; a transfection system and its utilization in gene expression signal analysis in the selective white rot fungus Ceriporiopsis subvermispora, multiple gene targeting system in Pleurotus ostreatus and Coprinopsis cinerea, which was used to do knock-out or knock-in of reporter constructs on the chromosome of these fungi, and a “powered” forward genetics combined with genome information was used to identify new gene responsible for lignin-degradation in P. ostreatus. They may contribute to elucidate uncovered molecular mechanisms in unique processes in the mushrooms and to make them as a new industrial tool in the next era. Furthermore, our recent results in on-going genome editing experiments will be also reported.
The whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) is one of the most important agricultural pests in Japan, that causes retard of plant growth and sooty moulds through excreted honeydew by direct sucking of pholoem sap, and additionally transmits several kinds of plant virus. B. tabaci consists of more than 20 biotypes which possess different ecological or physiological characters but cannot be distinguished from others morphologically. In Japan, exotic B and Q biotypes are the common pests of vegetables, flowers and ornamental plants. B biotype, the silver-leaf whitefly, was first recorded in Aichi Prefecture, Tokai region, in 1989 and expanded its distribution to almost all part of Japan, except for the northern area, within several years. Q biotype was recently found in Hiroshima Prefecture, Chugoku region, in 2004 and is still expanding the distribution in our country. Indigenous B. tabaci biotypes also exist in the southwestern part of Japan: JpL biotype was recorded in Honshu, Shikoku, Kyushu Islands and Nauru biotype was found in Amami and Ryukyu Islands. Although the host plants of these indigenous biotypes include some agricultural crops, these insects are not important as agricultural pests. The most serious problem in vegetable cultivation caused by B. tabaci is an intensive epidemic of the tomato yellow leaf curl disease (TYLCD) which leads to a large yield loss of tomato production in green houses. TYLCD distributes worldwide and it was found in Aich and Sizuoka Prefectures, Tokai region, and Nagasaki Prefecture, Kyushu region, simultaneously in 1996. The distribution of TYLCD expanded mainly in the western part of Japan for several years after its first finding, but recently TYLCD started to occur also in the eastern part of Japan, Kanto and Tohoku regions. Tomato yellow leaf curl virus (TYLCV), a pathogen of TYLCD, is transmitted by B or Q biotype of B. tabaci in a persistent manner. Although an effective control of B. tabaci is essential for decreasing of TYLCD outbreaks in tomato green houses, it is quite difficult to control these whiteflies only by the spraying of chemically synthesized insecticides due to their insecticide resistance. Especially, Q biotype shows a high level of resistance to pyriproxyfen and neonicotinoid insecticides. To avoid the development of insecticide resistance in B. tabaci, we are trying to combine some different control methods, for example, use of a fine mesh screen to prevent the invasion of vector insects, use of the physical-coating or microbial insecticides with the chemically synthesized insecticides to prevent the reproduction of vector insects, closing and steaming of a green house at the end of tomato cultivation to kill vector insects and prevent their escape from there, as an integrated pest management (IPM) system for B. tabaci and TYLCD control. We are also breeding TYLCV resistant varieties of tomato and considering how to use these varieties effectively.
We have demonstrated that textured nanocomposites can be fabricated by slip casting followed by partial oxidation. reaction sintering of mixed suspensions of and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that aluminaoriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.
We have demonstrated that textured nanocomposites can be fabricated by slip casting followed by partial oxidation - reaction sintering of mixed suspensions of and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that alumina-oriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.