농작물의 수분 매개자이며 생태계 유지에 필수적인 역할을 하는 꿀벌의 노제마병(nosemosis)은 꿀벌 집단 붕괴현상(colony collapse disorder: CCD)의 원인 중 하나로 알려져 있다. 또한, 노제마병은 봉군 약화를 초래할 뿐 아니라 여러 가지 양봉 산물의 생산성을 낮추는 원인이기도 하다. 국내에서는 Nosema ceranae가 노제마병의 주요 병원체로 알려져 있다. 노제마 감염을 확인하기 위해서는 꿀벌의 중장을 적출한 후 노제마 포자의 확인 및 계수를 통해 감염 수준을 평가할 수 있다. 본 연구에서는 더욱 빠르고 정확하게 노제마 감염 수준을 평가할 수 있는 새로운 방법으로 포자 염색법과 qPCR 방법을 개발하였다. 노제마 포자에 대해 특이적인 염색이 가능한 Fluorescent Brightener를 이용하여 노제마 감염 꿀벌 중장을 염색한 결과, 형광 발현으로 노제마의 감염 여부를 확인할 수 있었다. 또한, 중장내 포자량에 비례한 형광 발현도 확인할 수 있었다. 그러나, 노제마 감염에 대한 특이도 및 포자량에 비례한 형광 발현 민감도는 신뢰하기 어려웠다. 그에 비해, 노제마 특이 유전자를 이용한 qPCR 방법은 노제마의 감염 여부 뿐만 아니라 포자량에 비례한 감염 수준 결정이 가능함을 확인하였다. 특히, 많은 시료들에서 노제마 감염 수준의 신속하고 정확한 평가에 qPCR 방법은 유용하게 활용될 수 있을 것으로 기대되었다.
The baculovirus expression vector system (BEVS) is an effective and widely used method for the production of recombinant proteins in insect cells or larvae. However, the expression efficiency of foreign proteins using the polyhedrin promoter could not obtain the protein yields observed for native polyhedrin. To enhance the production efficiency of foreign protein in baculovirus expression system, the effects of various enhancer factor were investigated by fusion expressing them with the enhanced green fluorescent protein (EGFP). As a hyper expression factor, the optimal hyper BEVS was constructed by combining Hr5 sequence, VP39 promoter and Burst sequences. Additionally, the proteins expressed by the hyper expression system was markedly increased. This study suggests a new option for higher expression of useful foreign recombinant protein using the BEVS.
Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by 50–200 W m-2 compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF–CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1–3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the PM10 size fraction, were over 100 g m-3. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.
A system coupled the prognostic WRF mesoscale model and CALMET diagnostic model has been employed for predicting high-resolution wind field over complex coastal area. WRF has three nested grids down to 1km during two days from 24 August 2007 to 26 August 2007. CALMET simulation is performed using both initial meteorological field from WRF coarsest results and surface boundary condition that is Shuttle Radar Topography Mission (SRTM) 90m topography and Environmental Geographic Information System (EGIS) 30m landuse during same periods above. Four Automatic Weather System (AWS) and a Sonic Detection And Ranging (SODAR) are used to verify modeled wind fields. Horizontal wind fields in CM_100m is not only more complex but better simulated than WRF_1km results at Backwoon and Geumho in which there are shown stagnation, blocking effects and orographically driven winds. Being increased in horizontal grid spacing, CM_100m is well matched with vertically wind profile compared SODAR. This also mentions the importance of high-resolution surface boundary conditions when horizontal grid spacing is increased to produce detailed wind fields over complex terrain features.