Periodontitis is an inflammatory disease, which destroys the connective tissue and the alveolar bone. Recently, it has been suggested that the effect of natural substances could be induced into an anti-inflammatory environment. However, the effect of Safflower seed extract (SAF-M) associated with periodontitis has not been investigated yet. Therefore, the purpose of this study was to assess the anti-inflammatory effects of SAF-M. Cytotoxicity was assessed through MTS analysis using hGF and hPDL cells. Periodontitis was induced by injecting LPS into gingival tissue on the maxillary molars of rats (45 μg LPS/one time, 3 times a week for 3 weeks). SAF-M was administered daily at 30 mg/kg and 100 mg/kg. Alveolar bone resorption was evaluated through the micro-CT. hGF and hPDL cells showed differential cytotoxicity in response to SAF-M at 5 mg/ml and 1 mg/ml concentrations. Micro-CT showed reduction of the alveolar bone resorption in the SAF-M treatment group. These results suggested that SAF-M is a potential therapeutic agent for periodontitis.
The aim of this study was to investigate the effect of n-3 polyunsaturated fatty acids (PUFAs) on eruptive movement during tooth development. Sprague-Dawley (SD) rat pups were randomly divided into two groups; control group and experimental group. The experimental group was administered daily with n-3 PUFA by intraperitoneal (IP) injection. After 10 days postpartum, rat pups were sacrificed to evaluate the effect of n-3 PUFA on eruptive tooth movement. Histological analyses were by hematoxylin-eosin (H&E) staining. Tartrate-resistant acid phosphatase (TRAP) assay was performed to compare the osteoclast distribution in the bone matrix above the developing molar teeth. Incisor teeth eruptions were noticeably observed in IP group, as compared to control group. Rat pups in IP group showed faster tooth eruption on day 8 after birth. Through histological analyses, IP group showed thinner bone matrix and more osteoclasts above the 1st molar teeth, as compared to control group. TRAP assay showed significantly stronger stained pattern that the osteoclast above the 1st molar teeth in IP group, as compared to control group. The results suggested that n-3 PUFA could affect osteoclastic activity involved in bony remodeling during eruptive tooth movement.
One of functions of Galla Rhois (GR) is reportedly an anti-inflammatory effect on the several inflammatory diseases. However, an effect of GR related to periodontitis has not been investigated. In the present study, we examined the effect of the hexane extract of Galla Rhois (GR-H) on periodontitis. Cytotoxicity was assessed by MTS analysis using human gingival fibroblast (hGF) cells. Experimental periodontitis was induced by injecting E.coli LPS into the palatal gingiva maxillary molar thrice weekly for 3 weeks (LPS group). GR-H diluted in 1xPBS was orally administrated using a syringe at 30 mg/kg body weight and 100 mg/kg body weight once a day (GR-H group). GR-H effect on the alveolar bone loss (ABL) was digitized with a micro-CT. GR-H treatment at concentrations exceeding 0.5 mg/ml showed cytotoxic effect in hGF cells. The micro-CT among groups were presented for the different distances from cemento-enamel junction (CEJ) to alveolar bone crest (ABC). The results indicated an inhibitory effect on alveolar bone loss for orally administered GR-H in a model of LPS-induced periodontitis.
LAR-RPTP (leukocyte common antigen-related receptor protein tyrosine phosphatase) is an important regulator in the nervous system, but little is known about its expression pattern in rat trigeminal ganglion (TG) neurons. To examine whether LAR-RPTP is expressed in the TG in the current study, we sacrificed rats at 0, 7, 10 and 56 day postpartum (dpp) and a second group of rats at 3 and 5 days after an experimental tooth extraction as a TG injury model. RT-PCR was then used to determine the level of LAR-RPTP expression in the TG and immunohistology was employed to detect the subcellular localization of the protein. The mRNA expression of LAR-RPTP during the developmental stages in the TG was found to gradually increase. After experimental tooth extraction however, these transcript levels had significantly decreased at three days. LAR-RPTP protein signals in the TG were found to be cytoplasmic in the normal animals but interestingly, at five days after an experimental tooth extraction, these signals were rare. These results indicate that LAR-RPTP may be regulated during both the developmental as well as regenerative processes that take place in the TG. This further suggests that LAR-RPTP is not only involved in primary axonogenesis but possibly also in the molecular control of axons during TG repair.
A Hosta cultivar ‘Neulpureum 1’ was bred at the Korea National Arboretum, which produces new cultivars using vegetative propagation techniques. The new cultivar ‘Neulpureum 1’ was derived by crossing Hosta minor with Hosta ‘Krossa Regal’. Among the induced leaf-color- and shape-modified hosta plants, the plants that exhibited deep-green color and small-bended leaves were selected. ‘Neulpureum 1’ maintained the deep-green leaves for longer than Hosta ‘Krossa Regal’. Additionally, the plant height of ‘Neulpureum 1’ was shorter than that of Hosta ‘Krossa Regal’ and several leaves were observed on the new cultivar; therefore, it is likely to be used as a pot plant. The botanical characteristics were investigated for three years beginning 2012. A Hosta ‘Neulpureum 1’ can prove to be useful as a material for a pot plant or as ground cover plant at half-shadow place.
Phosphorus is one of the macronutrients essential for plant growth and development, as well as crop productivity. Many soils around the world are deficient in phosphate (Pi) that plants can utilize. To cope with the stress of Pi starvation, plants have evolved many adaptive strategies, such as changes of root architecture and enhanced Pi acquisition form soil. To understand molecular mechanism underlying Pi starvation stress signaling, we characterized the activation-tagged mutant showing altered responses to Pi deficiency compared to wild type Arabidopsis and named hsp3 (hypersensitive to Pi starvation3). hsp3 mutant exhibits enhanced phosphate transporter activity, resulting in higher Pi content than wild type. However, in root architectural change under Pi starvation, hsp3 shows hyposensitive responses than wild type, such as longer primary root elongation, lower lateral root density. Histochemical analysis using hsp3 mutant expressing auxin-responsive DR5::GUS reporter gene, indicated that auxin allocation from primary to lateral roots under Pi starvation is aborted in hsp3 mutant. Molecular genetic analysis of hsp3 mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3’ end processing. Here, we propose that mRNA processing plays a crucial role in Pi homeostasis in Arabidopsis.
In order to adapt to various environmental stresses, plants have employed diverse regulatory mechanisms of gene expression. Epigenetic changes, such as DNA methylation and histone modifications play an important role in gene expression regulation under stress condition. It has been known that some of epigenetic modifications are stably inherited after mitotic and meiotic cell divisions, which is known as stress memory. To understand molecular mechanisms underlying stress memory mediated by epigenetic modifications, we developed Arabidopsis suspension-cultured cell lines adapted to high salt by stepwise increases in the NaCl concentration up to 120 mM. Adapted cell line to 120 mM NaCl, named A120, exhibited enhanced salt tolerance compared to unadapted control cells (A0). Moreover, the salt tolerance of A120 cell line was stably maintained even in the absence of added NaCl, indicating that the salt tolerance of A120 cell line was memorized even after the stress is relieved. By using salt adapted and stress memorized cell lines, we intend to analyze the changes of DNA methylation, histone modification, transcriptome, and proteome to understand molecular mechanisms underlying stress adaptation as well as stress memory in plants.
In these experiments Gamiojeoksan remnant components were analyzed to recycle this medicinal herb remnant fertilizers. The basic growth of Korean mint by application of Gamiojeoksan remnants were higher than control. As the amount of fertilizers were increased, plant height, stem diameter, number of leaves and number of branches were increased. The growth and yield were the highest in the treatment of 30 g/pot. Weight of whole plant of Korean mint has a tendency to be heavy in application of herbs remnant than that of control.