검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 99

        41.
        2009.08 구독 인증기관·개인회원 무료
        This experiment was carried out to find out the optimum variety of com hybrids and to find out alternative crops in the rice black-streaked dwarf virus(RBSDV) prevalent area. Productivity of 4 Korean improved and 6 introduced com hybrids and RBSDV infection rate were tested for 3 years in both Cheonan(middle part of Korea) and Gochang(southern part of Korea). Percentage of RBSDV diseased plants differed depending on the hybrid and region.
        42.
        2009.05 구독 인증기관·개인회원 무료
        We assessed the environmental risk of herbicide resistant transgenic rice (Protox) on non-target herbivore, grasshoppers (Oxya japonica japonica Thunberg). We conducted life-history experiments of grasshoppers with measuring their body weight, body length, eating amount, and feces amount between non-transgenic rice (nTR; Dongjin rice) and transgenic rice (TR; Protox rice) under laboratory conditions (Temp. 25Ð, R.H. 50-70%, Photoperiod L16:D8) in 2007. The growth of grasshoppers appeared to increase at each measuring date. We also compared the growth rate of grasshoppers between nTR and TR to examine the transgenic impact on the herbivore and we found there was no statistically signifi cant difference between the two plant types (P>0.05). We found that body weight and body length for grasshoppers were highly correlated at each of the two types of plants, nTR (0.962) and TR (0.960). The correlation of eating amount and feces amount of grasshoppers were higher nTR (0.830) than TR (0.782). The energy effi ciency of the grasshopper was not a signifi cant between nTR and TR (P> 0.05). But the molt timing of the grasshoppers for TR difference was faster than for nTR. Conclusively life-history of the grasshoppers but molt timing was not a signifi cant difference between nTR and TR. Therefore, we could conclude there was not any environment risk on herbivore from our result.
        44.
        2008.05 구독 인증기관·개인회원 무료
        We determined the complete mitogenome of the oriental mayfly, Ephemera orientalis (Ephemeroptera: Ephemeridae) and the dragonfly Davidius lunatus (Odonata: Gomphidae). The 16,463-bp long E. orientalis and the 15,912 bp long D. lunatus mitogenome contains gene arrangement and content identical to the most common type found in a diverse insect order. Most individual E. orientalis and D. lunatus mt genes were well within the size found in the respective genes of other insects. The initiation codon for the D. lunatus COI gene was typical as ATA, whereas no typical start codon was found in the start region of E. orientalis COI gene. The A+T-rich regions of both mitogenomes have a few unusual feature. The A+T-rich region of E. orientalis contains a tandem repeat composed of two identical copies of 55 bp long, whereas that of D. lunatus contains a tandem repeat composed of duplicated identical 261-bp copies and one partial copy of the repeat. Also, the A+T-rich region of E. orientalis contains a single sequence and that of D. lunatus contains nine sequences, along with the tandem triplicate sequences, that has the potential to form stem-and-loop structures, flanked by the conserved sequences, “TA(A)TA” at the 5’ end and “G(A)nT’ at the 3’ end. Furthermore, the A+T-rich region of D. lunatus contains two tRNA-like structures, tRNALeu(UUR)-like sequence and tRNATyr-like sequence that have proper anticodon TAA and clover-leaf structure that were previously found in the hymenopteran insects.
        45.
        2008.05 구독 인증기관·개인회원 무료
        A new species, Hatchiana n. sp., is confirmed by morphological and molecular data. The genus Hatchiana Fender, 1966 belonging to Podabrini LeConte, 1881 is distinguished by the shape of tarsal claws: all tarsal claws with blunt tooth in both sexes. The genus was recognized as a subgenus of Podabrus Westwood, 1838. Recently, however, Hatchiana was suggested as separated genus. The genus Hatchiana was known as 12 species in Palaeartic region including three species from Korea. In this study, we found Hatchiana n. sp. from several areas of Taean-gun, Chungcheongnam-do, Korea. This new species is different from closely relative species, Hatchiana jirisanensis (Kang & Kim, 2000) by following morphological characters: size of compound eye, length of antennae, shape of pronotum, shape of scutellum, and shape of aedeagus. Also, we compare the DNA barcoding region (the former region of CO1 gene) between these two species as molecular characters. In result, Hatchiana n. sp. is distinct from Hatchiana jirisanensis Kang & Kim by discrepancy of three percents in CO1 sequence. Therefore, the Korean Hatchiana is confirmed as four species, adding Hatchiana n. sp.
        47.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.
        48.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Lectins belong to the pattern-recognition receptors (PRRs) class and play important roles in the recognition and elimination of pathogens via the innate immune system. Recently, it was reported that lily-type lectin-1 is involved when a pathogen attacks in the early immune response of fish. However, this study is limited to information that the lectin is involved in the innate immune response against viral infection. In the present study, the lily-type lectin-2 and -3 of Oplegnathus fasciatus (OfLTL-2 and 3) have been presented to be included B-lectin domain and two D-mannose binding sites in the amino acid sequence that an important feature for the fundamental structure. To investigate the functional properties of OfLTLs, the tissue distribution in the healthy rock bream and temporal expression during early developmental stage analysis are performed using quantitative real-time PCR. OfLTL-2 and 3 are predominantly expressed in the liver and skin, but rarely expressed in other organ. Also, the transcripts of OfLTLs are not expressed during the early developmental stage but its transcripts are increased after immune-related organs which are fully formed. In the challenge experiment with RBIV (rock bream iridovirus), the expression of OfLTLs was increased much more strongly in the late response than the early, unlike previously known. These results suggest that OfLTLs are specifically expressed in the immune-related tissues when those organs are fully formed and it can be inferred that the more intensively involved in the second half to the virus infection.
        49.
        2015.07 서비스 종료(열람 제한)
        Small RNAs, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), play crucial roles in post-transcriptional gene silencing (PTGS) in eukaryotes. Small RNAs function cell-autonomously as well as non-cell-autonomously. It has been well characterized that pathogenic fungi secrete some effector molecules facilitating their infection into plants. However, it is unclear whether molecules produced in plant cells are able to move into fungal cells during infection. To test if small RNAs generated from plant cells can move to fungal cells during infection, we generated transgenic Arabidopsis and rice plants expressing siRNAs targeting GFP gene generated from double-stranded RNA interference (dsRNAi) constructs for GFP gene. And then these transgenic plants were inoculated with transgenic rice blast fungus, Magnaporthe oryzae, expressing GFP transgene. Here, we showed that ectopic expression of siRNAs targeting GFP gene in transgenic plants significantly suppressed GFP expression in rice blast fungi inoculated, indicating that small RNA molecules generated in plant cells can move into infected fungal cells and efficiently degrade fungal GFP transcripts. Our results would provide a new small RNA-based strategy for the development of resistant crops against fungal pathogens.
        50.
        2015.07 서비스 종료(열람 제한)
        Major loci controlling flowering time and maturity of short-day plant soybean, E1, E2, E3, E4, E5, E6, E7 and E8, have been identified in soybean. The gene corresponding to E2 locus is a homolog of Arabidopsis GIGANTEA (AtGI). We identified three GI homologs in soybean and are verifying their roles in day-length dependent flowering. Expression anlysis indicated that GmGIs are ubiquitously expressed at all developmental stages of soybean plants. Diurnal expression of GmGIs fluctuates within light/dark cycles of long-day (LD) and short-day (SD). GmGI2 and GmGI3 have identical expression patterns under both day length conditions with the highest peak at zeitgeber time 8 h (ZT8) under LD and at ZT4 under SD. GmGI1 shows the peak at ZT12 under LD and at ZT8 under SD. All of GmGIs exhibit the earlier peak and the shorter phase under SD than LD. The results indicated that day length affects expressions of GmGIs. Subcellular localization analysis showed that GmGIs are mainly targeted to nucleus, similar to the localization of AtGI. Overexpression of GmGIs in Arabidopsis transgenic plants showed no significant effect on flowering time nor rescue of gi-2 mutant phenotype. The results suggested that GmGIs have different molecular functions in flowering time regulation of short-day plant soybean compared to long-day plant Arabidopsis. To investigate the molecular mechanisms of GmGIs’ functions in soybean flowering time control, we intend to identify target gene of GmGIs and interacting proteins by using yeast two-hybrid assay.
        51.
        2015.07 서비스 종료(열람 제한)
        To understand molecular mechanisms underlying adaptation of plant cells to saline stress and stress memory, we developed Arabidopsis callus suspension-cultured cells adapted to high salt. Adapted cells to high salt exhibited enhanced tolerance compared to control cells. Moreover, the salt tolerance of adapted cells was stably maintained even after the stress is relieved, indicating that the salt tolerance of adapted cells was memorized. Salt-adapted and stress memorized cells were densely aggregated and formed multi-layered cell lump. Cell morphology analysis using transmission electron microscopy indicated that cell wall thickness of salt-adapted cells was significantly induced compared to control cells. In order to characterize metabolic responses of plant cells during adaptation to high salt stress as well as stress memory, we compared metabolic profiles of salt-adapted and stress-memorized cells with control cells by using NMR spectroscopy. A principle component analysis showed clear metabolic discrimination among control, salt-adapted and stress-memorized cells. Compared with control cells, metabolites related to shikimate metabolism such as tyrosine, and flavonol glycosides, which are related to protective mechanism of plant against stresses were largely up-regulated in adapted cell lines. Moreover, coniferin, a precursor of lignin, was more abundant in salt-adapted cells than control cells. The results provide new insight into metabolic level mechanisms of plant adaptation to saline stress as well as stress memory.
        52.
        2015.07 서비스 종료(열람 제한)
        To identify novel signaling components involved in regulation of plant responses to phosphate (Pi) starvation, we screened an Arabidopsis T-DNA activation tagging library for mutants with altered Pi-starvation responses. Here, we report the identification and characterization of novel activation-tagged mutant involved in Pi starvation signaling in Arabidopsis. The hpd (hypersensitive to Pi deficiency) mutant exhibits enhanced phosphate uptake and altered root architectural change under Pi starvation compared to wild type. Expression analysis of auxin-responsive DR5::GUS reporter gene in hpd mutant indicated that both auxin biosynthesis and auxin translocation under Pi starvation are suppressed in hpd mutant plants. Impaired auxin translocation in roots of hpd mutant was attributable to abnormal root architecture changes in Pi starvation conditions. Mis-regulation of auxin translocation in hpd mutant was further confirmed by analysis of expression patterns of auxin efflux carrier proteins, PIN-FORMED (PIN) 1, 2, and 3 fused with GFP. Not only expression levels but also expression domains of PIN proteins were altered in hpd mutant in response to Pi starvation. Molecular genetic analysis of hpd mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3’-end processing. The results propose that mRNA processing plays crucial roles in Pi homeostasis as well as developmental reprograming in response to Pi deprivation in Arabidopsis.
        53.
        2015.03 서비스 종료(열람 제한)
        A case of three primary malignancies in one patient is rare. We report on a case of three primary malignancies including myxofibrosarcoma, renal cell cancer, and prostate cancer in one 18F-fluorodeoxyglucose (FDG) positron emission tomography/ computed tomography (PET/CT) evaluation of a 75-year-old man. PET/CT showed different FDG meabolism in each tumor.
        54.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        TCR subunits are members of membrane-bound receptors which allow the fast and efficient elimination of the specific fish pathogens have regulated function in adaptive immunity. Sequence structure of TCR subunits have been reported for various teleosts, but the information of each TCR subunit functional characterization through expression analysis in fish was unknown. In this study, we examined the gene expression of TCR subunits in the early developmental stages and observed transcript levels in various tissues from healthy adult olive flounder by RT-PCR. The mRNA expression of alpha subunit was already detected in the previous hatching step. But the transcripts of another TCR subunit were not observed during embryo development and increased after hatching and maintained until metamorphosis at the same level. It was found that all TCR subunits mRNAs are commonly expressed in the immune-related organ such as spleen, kidney and gill, also weak expressed in fin and eye. TCR alpha and beta subunit were expressed in brain, whereas gamma and delta were not expressed same tissue. The sequence alignment analysis shows that there are more than 80% sequence homology between TCR subunits. Because it has a high similarity of amino acid sequence to expect similar in function, but expression analysis show that will have may functional diversity due to different time and place of expression.
        55.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        The innate immune system is the only defense weapon that invertebrates have, and it is the fundamental defense mechanism for fish. The innate immune response is important in newly hatched flounders because it is closely involved in the initial feeding phase, which is why it is essential for survival during the juvenile period. The expression analysis of genes involved in the innate immune response in the olive flounder (Paralichthys olivaceus) in the days after hatching is incomplete. Therefore, we have begun to examine the expression patterns of genes specifically induced during the development of the innate immune system in newly hatched flounders. Microscopic observation showed that pronephron formation corresponded with the expression of perforin-encoding gene. These results suggest that perforin plays a vital role in the innate immunity of the kidney during developmental stages. Perforin expression was strong at the start of the development of the innate immune response, and continued throughout all the development stages. Our findings have important implications with respect to perforin’s biological role and the evolution of the first defense mechanisms in olive flounder. Further studies are required to elucidate the perforin-mediated innate immunity response and to decipher the functional role of perforin in developmental stages.
        56.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Fish larvae are immediately exposed to microbes from hatching to maturation of their lymphoid organs, therefore effective innate mechanisms is very important for survival in such an environment. The key component of innate immune system, C3 is central protein of all activation pathways of the complement system, leading to inflammatory reactions, such as opsonisation, chemotaxis, and cell lysis of pathogens. Although, innate mechanisms is essential for survival in the early stage of development, little is known about defence mechanisms. In this study, the alignment analysis showed that amino acid sequence of C3 from olive flounder liver EST homologous to other known C3 sequences with 73-99% identity. Also, we examined the tissue distribution of olive flounder C3 and analyzed expression pattern from the fertilized egg until 28 days post hatching. As a result, olive flounder C3 mRNA was expressed only in the liver and the mRNA level more increased as developmental proceed during the early stage. These results may suggest that olive flounder C3 plays an important function in the early immune response of olive flounder larvae.
        57.
        2013.08 서비스 종료(열람 제한)
        For the study of population genetic structure with mtDNA, it is essential to measure genetic diversity at each mtDNA regions. Also, to evaluate the variation according to the each region should follow as well as to see if there are differences. In this study, we delved into the variations and dendrogram among samples of seven mtDNA regions (NDⅡ, NDⅤ, NDⅣ, NDⅣL, NDⅥ, NDⅠ, 12SrRNA) from wild Pacific abalone, Haliotis discus hannai collected in Yeosu, Korea. The region with the highest genetic variation was NDⅣ region (Haplotype diversity = 1.0000, Nucleotide diversity = 0.010823) with two to five times higher variation than the others. Furthermore, the study to see if there is a difference between the regions of samples showed that similar aspects of dendrogram in NDⅡ and NDⅠ(divergence of 90% and 87%), which forms a group with hd4, 7, 8 and 10 at bootstrap support, based on 1000 replications. Also, pair-wise FST between clusters within the regions showed high values; 0.4061 (P=0.0000), 0.4805 (P=0.0000) respectively. Therefore we can infer that it is the most efficient and accurate way to analyze the region of NDⅣ with the highest variation in addition to the regions of NDⅡ and NDⅠ, which formed clusters with high bootstrap value, for study of population genetic structure in this species.
        58.
        2012.07 서비스 종료(열람 제한)
        Phosphorus is one of the macronutrients essential for plant growth and development, as well as crop productivity. Many soils around the world are deficient in phosphate (Pi) that plants can utilize. To cope with the stress of Pi starvation, plants have evolved many adaptive strategies, such as changes of root architecture and enhanced Pi acquisition form soil. To understand molecular mechanism underlying Pi starvation stress signaling, we characterized the activation-tagged mutant showing altered responses to Pi deficiency compared to wild type Arabidopsis and named hsp3 (hypersensitive to Pi starvation3). hsp3 mutant exhibits enhanced phosphate transporter activity, resulting in higher Pi content than wild type. However, in root architectural change under Pi starvation, hsp3 shows hyposensitive responses than wild type, such as longer primary root elongation, lower lateral root density. Histochemical analysis using hsp3 mutant expressing auxin-responsive DR5::GUS reporter gene, indicated that auxin allocation from primary to lateral roots under Pi starvation is aborted in hsp3 mutant. Molecular genetic analysis of hsp3 mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3’ end processing. Here, we propose that mRNA processing plays a crucial role in Pi homeostasis in Arabidopsis.
        59.
        2012.07 서비스 종료(열람 제한)
        In order to adapt to various environmental stresses, plants have employed diverse regulatory mechanisms of gene expression. Epigenetic changes, such as DNA methylation and histone modifications play an important role in gene expression regulation under stress condition. It has been known that some of epigenetic modifications are stably inherited after mitotic and meiotic cell divisions, which is known as stress memory. To understand molecular mechanisms underlying stress memory mediated by epigenetic modifications, we developed Arabidopsis suspension-cultured cell lines adapted to high salt by stepwise increases in the NaCl concentration up to 120 mM. Adapted cell line to 120 mM NaCl, named A120, exhibited enhanced salt tolerance compared to unadapted control cells (A0). Moreover, the salt tolerance of A120 cell line was stably maintained even in the absence of added NaCl, indicating that the salt tolerance of A120 cell line was memorized even after the stress is relieved. By using salt adapted and stress memorized cell lines, we intend to analyze the changes of DNA methylation, histone modification, transcriptome, and proteome to understand molecular mechanisms underlying stress adaptation as well as stress memory in plants.
        1 2 3 4 5