Over the years, in the field of safety assessment of geological disposal system, system-level models have been widely employed, primarily due to considerations of computational efficiency and convenience. However, system-level models have their limitations when it comes to phenomenologically simulating the complex processes occurring within disposal systems, particularly when attempting to account for the coupled processes in the near-field. Therefore, this study investigates a machine learning-based methodology for incorporating phenomenological insights into system-level safety assessment models without compromising computational efficiency. The machine learning application targeted the calculation of waste degradation rates and the estimation of radionuclide flux around the deposition holes. To develop machine learning models for both degradation rates and radionuclide flux, key influencing factors or input parameters need to be identified. Subsequently, process models capable of computing degradation rates and radionuclide flux will be established. To facilitate the generation of machine learning data encompassing a wide range of input parameter combinations, Latin-hypercube sampling will be applied. Based on the predefined scenarios and input parameters, the machine learning models will generate time-series data for the degradation rates and radionuclide flux. The time-series data can subsequently be applied to the system-level safety assessment model as a time table format. The methodology presented in this study is expected to contribute to the enhancement of system-level safety assessment models when applied.
Effective containment and disposal of high-level radioactive waste is critical to ensure long-term environmental and human safety. Especially bentonite, which is widely used as a buffer material due to its favorable characteristics such as swelling ability and low permeability, plays an important role in preventing the migration of radioactive waste into the surrounding environment. However, the long-term performance of bentonite buffer remains an area of ongoing investigation, with particular attention focused on erosion mechanisms induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact the integrity of buffer and lead to the formation of colloids, which could potentially facilitate the transport of radionuclides through groundwater. Therefore, quantification of bentonite buffer erosion based on an understanding of the underlying mechanisms and factors that influence bentonite buffer erosion, is essential for the safety assessment of high-level radioactive waste repositories. In this study, we aimed to develop a bentonite buffer erosion model using the Adaptive Processbased total system performance assessment framework for a geological disposal system (APro) proposed by the Korea Atomic Energy Research Institute (KAERI). The impact of bentonite erosion on performance assessment can be broadly divided into bentonite property degradation by the penetration of the bentonite buffer into rock fractures and the formation of pseudocolloids. To simulate this phenomenon, Two-region model based on a dynamic bentonite diffusion model is adopted, which can quantify the extent of bentonite intrusion and loss by erosion. Using this Tworegion model, a numerical model was developed to simulate the degradation of bentonite properties based on the amount of bentonite intrusion, as well as to simulate the migration of pseudocolloids in the near-field by deriving the amount of pseudocolloid production based on the loss of bentonite and the sorption rate of radionuclides. To check the applicability of the developed numerical model, preliminary analysis was performed for the effect of bentonite erosion in terms of process-based performance assessment. It is anticipated that this comprehensive model developed in this study will contribute to the accurate and reliable assessment of the long-term performance and safety of high-level radioactive waste repositories.
Bentonite is a widely used buffer material in high-level radioactive waste repositories due to its favorable properties, including its ability to swell and low permeability. Bentonite buffers play an important role in safe disposal by providing a low permeability barrier and preventing radionuclides migration into the surrounding rock. However, the long-term performance of the bentonite buffer is still an area of research, and one of the main concerns is the erosion of the buffer due to swelling and groundwater flow. Erosion of the bentonite buffer can have a significant impact on repository safety by reducing the integrity of the buffer and forming colloids that can transport radionuclides through groundwater, potentially increasing the risk of radionuclide migration. Therefore, understanding the mechanisms and factors that influence the erosion of the bentonite buffer is critical to the safety assessment of high-level radioactive waste repositories. In this study, we attempted to develop the bentonite buffer erosion model using Adaptive Processbased total system performance assessment framework for a geological disposal system (APro) proposed by the Korea Atomic Energy Research Institute (KAERI). First, the erosion phenomenon was divided into two stages: bentonite buffer penetration into rock fractures and colloid formation. As an initial step in the development of the buffer erosion model, a bentonite buffer intrusion into the fracture and consequent degradation of buffer property were considered. For this purpose, a tworegion model based on the dynamic bentonite diffusion model was adopted which is one of the methods for simulating bentonite buffer intrusion. And, it was assumed that the buffer properties, such as density, porosity and permeability, thermal conductivity, modulus of elasticity, and mechanical strength, are degraded as the buffer erodes. The bentonite buffer degradation model developed in this study will serve as a foundation for the comprehensive buffer erosion model, in conjunction with the colloidal formation model in the future.
In this paper, a basic study was conducted to observe the temperature inside the tube according to the heating temperature of the tube furnace. In a tube furnace, a tube is inserted, and the air space outside the tube is heated to increase the temperature of the gas inside the tube through conduction of the tube. Tube furnaces are widely used in research to capture volatile nuclides. In this case, a volatile nuclide capturing filter is inserted inside the tube, and an appropriate temperature is required to capture it. Since the tube furnace heats the air space outside the tube to the target temperature, a difference from the temperature inside the tube occurs. In particular, if a flow of gas occurs inside the tube, a larger temperature difference may occur. In order to confirm this temperature difference, an experimental device was constructed, and basic data was produced through several experiments. The following studies were conducted to produce data. First, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time in the absence of gas flow inside the tube. Second, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time while air having a certain temperature was flowing inside the tube. As a result of the experiment, when there is no flow inside the tube, when the heating target temperature is low, the temperature inside the tube is significantly lower than the target temperature, and when the target temperature is high, the temperature inside the tube approaches the target temperature. It was found that when there is about 20°C air flow inside the tube, the temperature inside the tube is significantly lowered even if the heating target temperature is high. In the future, additional research on changing the temperature of the gas flowing inside the tube will be conducted, and the results of this study are expected to greatly contribute to the design of a tube furnace that captures volatile nuclides.
We measured temporal and emission properties of quiescent magnetars using archival Chandra and XMM-Newton data, produced a list of the properties for 17 magnetars, and revisited previously suggested correlations between the properties. Our studies carried out with a larger sample, better spectral characterizations, and more thorough analyses not only confirmed previously-suggested correlations but also found new ones. The observed correlations differ from those seen in other neutron-star populations but generally accord with magnetar models. Specifically, the trends of the intriguing correlations of blackbody luminosity (𝐿BB) with the spin-inferred dipole magnetic field strength (𝐵S) and characteristic age (𝜏c) were measured to be 𝐿BB ∝ 𝐵1.5 S and 𝐿BB ∝ 𝜏−0.6 c , supporting the twisted magnetosphere and magnetothermal evolution models for magnetars. We report the analysis results and discuss our findings in the context of magnetar models.
Excavation Damaged Zone (EDZ) is created by the excavation of deposition holes and disposal tunnels at high-level radioactive waste repository that causes macro- and micro-fracturing in the surrounding rock. Since EDZ can significantly increase the hydraulic transmissivity in the rock and act as a major pathway of leaked radionuclides, consideration of EDZ in terms of safety assessment is very important. Moreover, long-term stress changes such as stress redistribution due to excavation of nearby deposition holes and disposal tunnels, thermal stress due to temperature rise, effective stress change due to pore pressure change, and swelling pressure of bentonite buffer can increase EDZ size and change in thermal-hydraulic-mechanical properties, and consequently, it can affect the transport of radionuclides. Therefore, in order to analyze the effect of long-term evolution of EDZ on radionuclide transport, it is essential to conduct numerical analysis considering the coupled Thermal-Hydraulic- Mechanical (THM) behavior in EDZ. In order to simulate the behavior of EDZ, coupled THM model was developed using the Adaptive Process-based total system performance assessment framework for a geological disposal system (APro) proposed by the Korea Atomic Energy Research Institute (KAERI). The concept of damage was introduced to demonstrate the jointed rock as a continuous medium. Among several damage models, Mazars damage model was applied in this study. Mazars damage model is the most well-known model for concrete which has similar behavior with rock as brittle material, and the input data of the model can be easily obtained through laboratory testing. If damage occurs due to the influence of thermal-hydraulic-mechanical coupled behavior at the bedrock, the properties change according to the degree of damage, and as a result, the migration of the radionuclide is affected. Based on this conceptual model, radionuclide transport model in the near field considering the long-term evolution of EDZ was developed. To investigate the effect of EDZ in terms of process-based performance assessment, the modeling results with and without EDZ were compared. Finally, by simulating the coupled THM behavior of EDZ with damage model, the effect of long-term evolution of EDZ on radionuclide transport was investigated.
In the geological disposal system whose host rock is crystalline rock, fractures play a significant role in the safety assessment as they are the main pathway of the radionuclide migration. From the perspective of long-term safety assessment, the properties of fractures can be changed by tectonic movement such as earthquake, uplift, etc. In general, methods for simulating fractures include Discrete Fracture Network (DFN), which directly simulates the fracture surface, and Equivalent Continuous Porous Media (ECPM), which is equivalent to the ratio of the fractures in a certain rock volume. DFN is generally appropriate for deterministic fractures with large scale and high flow velocity, but ECPM may be more appropriate for small scale and sporadically distributed stochastic fractures because the flow velocity is slow and thus the rock matrix diffusion needs to be considered. In fact, several commercial software, such as FracMan, are already in use to convert DFN to ECPM. However, in order to consider the change in properties of fractures due to tectonic movement in the long-term safety assessment, a model that converts DFN to ECPM needs to be modularized and embedded into the safety assessment model. In this study, therefore, an in-house MATLAB code was developed to convert DFN to ECPM, which can be used as a submodule. The algorithm of converting from DFN to ECPM basically followed the Oda’s method. As the first step of the algorithm, in order to obtain the volume ratio of the fracture in a certain mesh element, the cross-sectional area of the fracture and the mesh element was calculated. Then, porosities of each mesh element were calculated as the volume fraction of fractures passing through the mesh element. Based on the Oda’s method, the permeability tensors of each mesh element were calculated by using an empirical fracture tensor which is weighted by the cross-sectional area and transmissivity of each fracture. Finally, the newly developed module was verified by a benchmark test, in which the ECPM results converted from a certain DFN data by using the numerical module developed in this study were compared with those by using FracMan. The newly developed module will be installed in the process-based total system performance assessment framework (APro) being developed by KAERI.
The Korea Atomic Energy Research Institute is developing a nuclide management process that separates high heat, high mobility, and long half-life nuclides that burden the disposal of spent fuel, and disposes of spent fuel by nuclide according to the characteristics of each nuclide. Various offgases (volatile and semi-volatile nuclides) generated in this process must be discharged to the atmosphere below the emission standard, so an off-gas trapping system is required. In this study, we introduce the analysis results of the parameters that affect the design of the off-gas trapping system. The analyzed contents are as follows. The physical quantities of the Cs, Tc/se, and I trapping filters according to the amount of spent nuclear fuel, the maximum exothermic temperature of the Cs trapping filter and the absorbed dose by distance by Cs radioactivity were analyzed according to the amount of spent nuclear fuel. In addition, a three-dimensional CFD (Computational Fluid Dynamics) analysis was performed according to operating parameters by simply modeling the off-gas trapping system, which is easy to modify mechanical design parameters. It is considered that the analysis results will greatly contribute to the development of the off-gas trapping system design requirements.
최근 비풀러렌 전자수용체 소재 개발로 태양전지 및 광검출기 등 유기광다이오드 분야의 상당한 진보를 나타내고 있 다. 비풀러렌 소재의 자유로운 구조 개질 가능성을 바탕으로 흡광대역 자유 제어가 가능한 장점으로, 기존 태양전지 에서 구현이 힘들었던 고성능 반투명 태양전지, 실내 저조도 태양전지, 파장선택적 광검출기 등 다양한 응용을 가능 하게 한다. 본 리뷰에서는 유기태양전지를 비롯한 유기광다이오드의 광활성층에 활용되는 유기반도체 소재의 최신 연 구동향에 대해 다루고자 한다.
Gases such as hydrogen can generate from the disposal canister in high-level radioactive waste disposal systems owing to the corrosion of cooper container in anoxic conditions. The gas can be accumulated in the voids of bentonite buffer around the disposal canister if gas generation rates become larger than the gas diffusion rate of bentonite buffer with the low-permeability. Continuous gas accumulations result in the increase in gas pressure, causing sudden dilation flow of gases with the gas pressure exceeding the gas breakthrough pressure. Given that the gas dilation flow can cause radionuclide leakage out of the engineered barrier system, it is necessary to consider possible damages affected by the radionuclide leakage and to properly understand the complicated behaviors of gas flow in the bentonite buffer with low permeability. In this study, the coupled hydro-mechanical model combined with the damage model that considers two-phase fluid flow and changes in hydraulic properties affected by mechanical deformations is applied to numerical simulations of 1-D gas injection test on saturated bentonite samples (refer to DECOVALEX-2019 Task A Stage 1A). To simulate the mechanical behavior of microcracks which occur due to the dilation flow caused by increase in gas pressure, a concept of elastic damage constitutive law is considered in the coupled hydro-mechanical model. When the TOUGH-FLAC coupling-based model proposed in this study is applied, changes in hydraulic properties affected by mechanical deformations combined with the mechanical damage are appropriately considered, and changes in gas injection pressure, pore pressures at radial filters and outlet, and stress recorded during the gas injection test are accurately simulated.
In recent years, the importance of the thermo-hydraulic-mechanical-chemical coupled processes is increasing in the performance assessment (PA) of the high-level radioactive waste repository. In the case of mechanical behavior, it is very important because it can affect fluid flow and radionuclide transport by changing the porosity and permeability of the medium. In particular, Excavation Damaged Zone (EDZ) should be considered essential in PA because the migration of radionuclide is affected by the enhanced hydraulic transmissivity and altered geomechanical behavior of EDZ. Furthermore, due to various thermo-hydraulic behaviors such as decay heat generated from radioactive waste, pore water pressure increase, and swelling pressure of bentonite buffer material, mechanical evolution is occurred which may change the size and physical properties of EDZ. Therefore, to solve this problem, analysis of coupled thermal-hydraulic-mechanical (THM) processes with the effect of long-term evolution of EDZ due to the mechanical behavior should be accompanied. In this study, numerical model for the long-term evolution due to mechanical behavior considering EDZ using the Adaptive Process-based total system performance analysis framework for a geological disposal system (APro) proposed by the Korea Atomic Energy Research Institute (KAERI). In the case of EDZ, the concept of Mazars’ damage evolution model was applied to simulate the behavior using the continuum model, and the change in hydraulic properties according to the degree of damage was considered. To investigate the importance of mechanical behavior in PA, the results were compared by performing numerical analysis according to the presence or absence of mechanical analysis. Finally, numerical analysis considering the mechanical evolution of EDZ was conducted using the model developed in this study to investigate the effect of EDZ.
With the increase of temporarily-stored spent radioactive fuels, there is an increasing necessity for the safe disposal of high-level radioactive waste (HLW). Among various methods for the disposal of HLW, a deep geological disposal system is adapted as a HLW disposal strategy in many countries. Before the construction of a repository in deep geological condition, a performance assessment, which means the use of numerical models to simulate the long-term behavior of a multi-barrier system in HLW repository, has been widely performed to ensure the isolation of radionuclides from human and related environments for more than a million years. Meanwhile, Korea Atomic Energy Research Institute (KAERI) is developing a process-based total system performance assessment framework for a geological disposal system (APro). To improve the reliability of APro, KAERI is participating in DECOVALEX-2023 Task F, which is the international joint program for the comparison of the models and methods used in deep geological performance assessment. As a final goal of Task F, the reference case for a generic repository in fractured crystalline rock is described. The three-dimensional generic repository is located in a domain of 5 km in length, 2 km in width, and 1 km in depth, and contains an engineering barrier system with 2,500 deposition holes in fractured crystalline rock. In this study, a numerical simulation of the reference case is performed with COMSOL Multiphysics as a part of Task F. The fractured crystalline rock is described with the discrete fracture matrix (DFM) model, which expresses major deterministic fractures explicitly in the domain and minor stochastic fractures implicitly with upscaled quantities. As an output of the numerical simulation, fluid flow at steady-state and radionuclide transport are evaluated for ~106 years. The result shows that fractures dominate the transport of radionuclides due to much higher hydraulic properties than rock matrix. The numerical modeling approaches used in this study are expected to provide a basis for performance assessment of nuclear waste disposal repository located in fractured crystalline rock.
Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.