Hip muscle activation and strengthening exercise programs are often used to prevent and treat various lower extremity injuries. Common exercise programs include squat exercises. The purposes of this study were to investigate gluteus medius (GMED) and tensor fasciae latae (TFL) muscle activity, and to assess the GMED/TFL ratio during squat exercises involving different isometric hip contraction conditions. Different types of isometric hip contraction were standard squat without hip contraction, squats with isometric hip adduction, and squats with isometric hip abduction. Twenty (10 males and 10 females) healthy subjects (23.7±2.8 years old) were recruited. Subjects performed the squat exercises with the back supported by a wall and knees flexed to 60°. Surface electromyography (EMG) was used to measure GMED and TFL activity. One-way repeated analysis of variance was used to compare GMED and TFL muscle activity and the GMED/TFL ratio. GMED and TFL EMG activity was significantly higher during squats with isometric hip adduction and abduction compared with the standard squat without hip contraction (p<.05). Between the isometric hip adduction and abduction contraction conditions, only the TFL EMG activity was significantly higher during squats with isometric hip adduction than isometric hip abduction (p<.05). The GMED/TFL ratio was significantly higher during squats with isometric hip adduction than isometric hip abduction (p<.05). Squats with isometric hip adduction and abduction improved GMED and TFL muscle activity. Furthermore, the GMED/TFL ratio was higher during isometric hip adduction than isometric hip abduction. Our data indicate that squat exercises involving isometric hip adduction enhance GMED muscle activity.
The purposes of this study were 1) to determine the effects of low-dye taping on peak plantar pressure following treadmill walking exercise, 2) to determine whether the biomechanical effectiveness of low-dye taping in peak plantar pressure was still maintained following removal of the tape during treadmill walking, and 3) to determine the trend towards a medial-to-lateral shift in peak plantar pressure in the midfoot region before and after application of low-dye taping. Twenty subjects with flexible flatfoot were recruited using a navicular drop test. The peak plantar pressure data were recorded during five treadmill walking sessions: (1) un-taped, (2) baseline-taped, (3) after a 10-minute treadmill walking exercise, (4) after a 20-minute treadmill walking exercise, and (5) after removal of the taping. The foot was divided into six parts during the data analysis. One-way repeated measures analysis of variance was performed to investigate peak plantar pressure variations in the six foot parts in the five sessions. This study resulted in significantly increased medial forefoot peak plantar pressure compared to the un-taped condition (p=.017, post 10-minute treadmill walking exercise) and (p=.021, post 20-minute treadmill walking exercise). The peak plantar pressure in the lateral forefoot showed that there was a significant decrease after sessions of baseline-taped (p=.006) and 10-minute of treadmill walking exercise (p=.46) compared to the un-taped condition. The tape removal values were similar to the un-taped values in the five sessions. Thus, the findings of the current study may be helpful when researchers and clinicians estimate single taping effects or consider how frequently taping should be replaced for therapeutic purposes. Further studies are required to investigate the evidence in support of biomechanical effectiveness of low-dye taping in the midfoot region.
The aim of this study to investigate the effects of craniocervical flexion on muscle activities of scapular upward rotators during push-up plus exercise in subjects with winging scapula. Eighteen males with scapular winging were recruited, and each subject performed knee push-up plus and other exercises, in two conditions (craniocervical flexion vs. natural head positions). A surface electromyography (EMG) was used to measure upper trapezius (UT), serratus anterior (SA), and lower trapezius (LT) muscle activity. A paired t-test was used to determine the statistical significance between the different condition with/without applying of craniocervical flexion. UT EMG activity significantly decreased and SA EMG activity significantly increased during knee push-up plus involving the craniocervical flexion compared to the natural head position. However, no significant differences (p>.05) were found in the activity of the LT muscle. The UT/SA ratios with and without craniocervical flexion showed a significant difference (p<.05). These results showed that the knee push-up plus other exercises performed with craniocervical flexion could strengthen the serratus anterior muscle and minimize the activity of the UT muscle.
The first purpose was to identify the plantar pressure distributions (peak pressure, pressure integral time, and contact area) during level walking, and stair ascent and descent in asymptomatic flexible flatfoot (AFF). The second purpose was to investigate whether peak pressure data during level walking could be used to predict peak pressure during stair walking by identifying correlations between the peak pressures of level walking and stair walking. Twenty young adult subjects (8 males and 12 females, age 21.0±1.7 years) with AFF were recruited. A distance greater than 10 ㎜ in a navicular drop test was defined as flexible flatfoot. Each subject performed at least 10 steps during level walking, and stair ascent and descent. The plantar pressure distribution was measured in nine foot regions using a pressure measurement system. A two-way repeated analysis of variance was conducted to examine the differences in the three dependent variables with two within-subject factors (activity type and foot region). Linear regression analysis was conducted to predict peak pressure during stair walking using the peak pressure in the metatarsal regions during level walking. Significant interaction effects were observed between activity type and foot region for peak pressure (F=9.508, p<.001), pressure time integral (F=5.912, p=.003), and contact area (F=15.510, p<.001). The regression equations predicting peak pressure during stair walking accounted for variance in the range of 25.7% and 65.8%. The findings indicate that plantar pressures in AFF were influenced by both activity type and foot region. Furthermore the findings suggest that peak pressure data during level walking could be used to predict the peak pressure data during stair walking. These data collected for AFF can be useful for evaluating gait patterns and for predicting pressure data of flexible flatfoot subjects who have difficulty performing activities such as stair walking. Further studies should investigate plantar pressure distribution during various functional activities in symptomatic flexible flatfoot, and consider other predictors for regression analysis.
The purpose of this study was to determine which spatiotemporal gait parameters obtained during hemiplegic walking could be a predictive factor for the Timed Up and Go test (TUG). Two hundreds nine subjects who had suffered a stroke were recruited for this study. They were participated in two assessments; the TUG test and gait analysis. The relationship between the TUG test and spatiotemporal parameters was analyzed using Pearson’s correlation coefficients. In addition, to predict the spatiotemporal gait parameters that correlated most with the TUG scores, we used multiple linear regression analyses (stepwise method). The results show that the normalized velocity was strongly correlated with the TUG performance (r=-.72, p<.001). Additionally, single support percentage (SSP), double support percentage (DSP), step time difference (STD), and step length difference (SLD) significantly were correlated with the TUG test. Normalized velocity, STD, DSP of affected side, and SSP of non-affected side explained 53%, 8%, 3%, 2%, of variance in the TUG test respectively. In conclusion, an increase in gait velocity and a decrease in STD would be effective indicators of improvement on the functional mobility in the stroke rehabilitation.