검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to develop a regression model using data from the Ammunition Stockpile Reliability Program (ASRP) to predict the shelf life of 81mm mortar high-explosive shells. Ammunition is a single-use item that is discarded after use, and its quality is managed through sampling inspections. In particular, shelf life is closely related to the performance of the propellant. This research seeks to predict the shelf life of ammunition using a regression model. The experiment was conducted using 107 ASRP data points. The dependent variable was 'Storage Period', while the independent variables were 'Mean Ammunition Velocity,' 'Standard Deviation of Mean Ammunition Velocity,' and 'Stabilizer'. The explanatory power of the regression model was an R-squared value of 0.662. The results indicated that it takes approximately 55 years for the storage grade to change from A to C and about 62 years to change from C to D. The proposed model enhances the reliability of ammunition management, prevents unnecessary disposal, and contributes to the efficient use of defense resources. However, the model's explanatory power is somewhat limited due to the small dataset. Future research is expected to improve the model with additional data collection. Expanding the research to other types of ammunition may further aid in improving the military's ammunition management system.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the military, ammunition and explosives stored and managed can cause serious damage if mishandled, thus securing safety through the utilization of ammunition reliability data is necessary. In this study, exploratory data analysis of ammunition inspection records data is conducted to extract reliability information of stored ammunition and to predict the ammunition condition code, which represents the lifespan information of the ammunition. This study consists of three stages: ammunition inspection record data collection and preprocessing, exploratory data analysis, and classification of ammunition condition codes. For the classification of ammunition condition codes, five models based on boosting algorithms are employed (AdaBoost, GBM, XGBoost, LightGBM, CatBoost). The most superior model is selected based on the performance metrics of the model, including Accuracy, Precision, Recall, and F1-score. The ammunition in this study was primarily produced from the 1980s to the 1990s, with a trend of increased inspection volume in the early stages of production and around 30 years after production. Pre-issue inspections (PII) were predominantly conducted, and there was a tendency for the grade of ammunition condition codes to decrease as the storage period increased. The classification of ammunition condition codes showed that the CatBoost model exhibited the most superior performance, with an Accuracy of 93% and an F1-score of 93%. This study emphasizes the safety and reliability of ammunition and proposes a model for classifying ammunition condition codes by analyzing ammunition inspection record data. This model can serve as a tool to assist ammunition inspectors and is expected to enhance not only the safety of ammunition but also the efficiency of ammunition storage management.
        4,000원
        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prevent accidents via defective ammunition, this paper analyzes recent research on ammunition life prediction methodology. This workanalyzes current shelf-life prediction approaches by comparing the pros and cons of physical modeling, accelerated testing, and statistical analysis-based prediction techniques. Physical modeling-based prediction demonstrates its usefulness in understanding the physical properties and interactions of ammunition. Accelerated testing-based prediction is useful in quickly verifying the reliability and safety of ammunition. Additionally, statistical analysis-based prediction is emphasized for its ability to make decisions based on data. This paper aims to contribute to the early detection of defective ammunition by analyzing ammunition life prediction methodology hereby reducing defective ammunition accidents. In order to prepare not only Korean domestic war situation but also the international affairs from Eastern Europe and Mid East countries, it is very important to enhance the stability of organizations using ammunition and reduce costs of potential accidents.
        4,000원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study explores multiple variables of an OTT service for discovering hidden relationship between rating and the other variables of each successful and failed content, respectively. In order to extract key variables that are strongly correlated to the rating across the contents, this work analyzes 170 Netflix original dramas and 419 movies. These contents are classified as success and failure by using the rating site IMDb, respectively. The correlation between the contents, which are classified via rating, and variables such as violence, lewdness and running time are analyzed to determine whether a certain variable appears or not in each successful and failure content. This study employs a regression analysis to discover correlations across the variables as a main analysis method. Since the correlation between independent variables should be low, check multicollinearity and select the variable. Cook's distance is used to detect and remove outliers. To improve the accuracy of the model, a variable selection based on AIC(Akaike Information Criterion) is performed. Finally, the basic assumptions of regression analysis are identified by residual diagnosis and Dubin Watson test. According to the whole analysis process, it is concluded that the more director awards exist and the less immatatable tend to be successful in movies. On the contrary, lower fear tend to be failure in movies. In case of dramas, there are close correlations between failure dramas and lower violence, higher fear, higher drugs.
        4,200원
        5.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of CXCR7, a seven-transmembrane G-protein coupled chemokine receptor, which binds with high affinity to chemokine CXCL11 and CXCL12 in oral cancer cells and the effect of transient CXCR7-downregulation on proliferation and migration of oral squamous cell carcinoma (OSCC) cells have not been reported. The aim of the present study was to evaluate the effects of CXCR7 on an OSCC cell line. In this study, we down-regulated CXCR7 in the KOSCC25B OSCC cell line by siRNA. In vitro cell proliferation and migration assays were used to investigate the effect of CXCR7- downregulation on cell proliferation and migration in si.KOSCC25B cells. The CXCR7 down-regulated OSCC cells grew significantly slower than the negative control siRNA transfected KOSCC25B cells (p<0.05). Additionally, migration of si.KOSCC25B cells decreased significantly compared with non-transfected KOSCC25B cells (p<0.007). These results suggest that down-regulation of CXCR7 induces anti-proliferative and anti-migratory effects in OSCC, and that CXCR7 may be a useful target molecule for the treatment of OSCC.
        4,000원