This study analyzed the effects of different nitrogen sources in substrate composition on the growth of Pleurotus ostreatus, as well as the subsequent changes in flavor and antioxidant activity. The T2, composed of poplar sawdust, beet pulp, cotton seed dregs, and cotton seed coat in a ratio of 40:20:20:20, exhibited the highest yield at 156.6 g. The total polyphenol content and ABTS and DPPH radical scavenging activities were 8.25 mg GAE/g, 70%, and 49%, respectively, showing higher radical scavenging activity compared to the Control and T1. Additionally, varying nitrogen content resulted in distinct aroma patterns and is presumed to influence taste profiles such as sourness, umami, and saltiness.
In this study, we examined the effects of gamma irradiation dosage on the mycelial growth of Auricularia auriculajudae and performed analyses of fruiting body yield, growth characteristics, taste, fragrance, and mineral composition. Assessments of mycelial growth in response to gamma irradiation at different intensities revealed an enhancement in the growth of fungi exposed to irradiation at 200 Gy. Fruiting body yield was also highest at 200 Gy, followed by 800 Gy and the control group. On the basis of these observations, we subsequently applied gamma ray doses of 200 and 800 Gy to examine the effects of irradiation on fungal quality characteristics. In terms of the taste of fruiting bodies, we detected no significant differences among the control, 200 Gy, and 800 Gy groups. Contrastingly, with respect to fragrance, we found that fungi treated with 200 Gy were characterized by a pattern that differed from those of the control and other treatment groups. Furthermore, whereas we detected no significant difference among treatments with respect total dietary fiber content, calcium content was found to be higher in the treatment groups compared with the control group, with the highest content being measured in fungi exposed to 800 Gy irradiation. Copper content was confirmed to be higher in the control group, whereas there were no significant differences between the fungi irradiated with 200 and 800 Gy. Contrastingly, the highest levels of zinc were detected in response to 200 Gy irradiation, followed by 800 Gy. Collectively, our findings thus indicate that gamma irradiation can contribute to promoting increases in the fruiting body yield and mineral contents of mushrooms.
유기농업자재 제조 원료가 되는 주요 식물인 제충국, 고삼, 데리스, 님 등은 대부분 수입에 의존하고 있는 실정 으로 제품수급, 효용성 및 안전성 등에 빈번한 문제가 발생되고 있다. 이러한 문제점을 해결하기 위하여 국내 자생식물을 추출물 원료로 이용하기 위한 연구를 수행하고 있다. 이중 마트린이 함유되어 살충제로 이용되고 있는 고삼에 흰가루병, 총채벌레, 줄붉은들명나방, 담배거세미나방, 거품벌레류가 발생하여 피해를 주었다. 특 히 줄붉은들명나방(Uresiphita prunipennis)은 7월 하순부터 9월 중순까지 발생하여 엽육을 갉아먹고 엽맥만 남기는 피해를 주었고, 피해주율은 11% 였다. 이를 방제하기 위해 18종의 유기농업자재의 살충효과를 조사한 결과 주성분이 마늘추출물 80%, 데리스추출물 70% 등인 자재 6종이 80% 이상의 살충률을 나타내었다.
In this study, the growth characteristics of Lentinula edodes were confirmed by bean sprout waste(BW) as an alternative raw material for rice bran. The mycelium growth of Sanjo701, a major cultivation variety of L. edodes, was compared between a medium mixed with 8:2(v/v) of oak sawdust and a medium mixed with BW 50% and BW 100%. The mycelium growth in BW 50% was 13.5 cm. Compared to the control, BW 50% increased the diameter of the pileus by 1.6 cm. Additionally, the length of the pileus decreased by 0.4 cm when comparing the growth of the fruit body. In contrast, at BW 50%, the diameter of the pileus decreased by 9.6 cm and the length of the stipe decreased by 1.4 cm. According to analysis of the constituent amino acids, BW 50% showed a lower overall nutritional content than the control, whereas BW 100% had a lower amino acid content than the control. However, glutamic acid and aspartic acid, which are flavor-enhancing ingredients, were observed at levels of 3.954 mg/g and 1.436 mg/g, respectively, in BW 100%. Therefore, if bean sprout by-products are efficiently processed and utilized, it is believed that they will be beneficial to farmers as a substitute for rice bran and reduce the cost of manufacturing substrate
Korea Radioactive Waste Agency (KORAD), regulatory body and civic groups are calling for an infrastructure system that can more systematically and safely manage data on the results of radioactive waste sampling and nuclide analysis in accordance with radioactive waste disposal standards. To solve this problem, a study has been conducted on the analysis of the nuclide pattern of radioactive waste on the nuclide data contained in low-and intermediate-level radioactive waste. This paper will explain the optimal repackaged algorithm for reducing radioactive waste based on previous research results. The optimal repackaged algorithm for radioactive waste reduction is comprised based on nuclide pattern association indicators, classification by nuclide level of small-packaged waste, and nuclide concentration. Optimization simulation is carried out in the order of deriving nuclide concentration by small-packaged, normalizing drum minimization as a function of purpose, normalizing constraints, and optimization. Two scenarios were applied to the simulation. In Scenario 1 (generating facilities and repackaged by medium classification without optimization), it was assumed that there are 886 low-level drums and 52 very low-level drums. In Scenario 2 (generating facilities and repackaged by medium classification with optimization), 708 and 230 drums were assigned to the low-level and very low-level drums, respectively. As a result of the simulation, when repackaged in consideration of the nuclide concentration and constraints according to the generating facility cluster & middle classification by small package (Scenario 2) the low-level drum had the effect of reducing 178 drums from the baseline value of 886 drums to 708 drums. It was found that the reduced packages were moved to the very low-level drum. The system that manages the full life-cycle of radioactive waste can be operated effectively only when the function of predicting or tracking the occurrence of radioactive waste drums from the source of radioactive waste to the disposal site is secured. If the main factors affecting the concentration and pattern of nuclides are systematically managed through these systems, the system will be used as a useful tool for policy decisions that can prevent human error and drastically reduce the generation of disposable drums.
With the development of the nuclear industry and the increase in the use of radioactive materials, the generation of radioactive waste is increasing. As the generation of radioactive waste increases, the occurrence of related safety accidents is also increasing, and it is necessary to develop a radioactive waste monitoring technology to prevent such accidents in advance and efficiently manage radioactive waste. In Information and Communication Technology (ICT), various ICT technologies such as Internet of Things (IoT), Augmented Reality (AR), and Virtual Reality (VR) that can help with the safety management of these radioactive wastes are being developed. In this study, a radioactive waste monitoring technology was developed using ICT technology, such as management of the entire cycle history of waste using Quick Response (QR) codes, and development of AR visualization technology for small packages of radioactive waste. In addition, by using IoT technology to collect desired data from sensors and store the results, after the waste drum is loaded in the waste storage, a technology was developed to track and monitor the history and movement of the waste drum from repackaging to transfer to the storage. The data required for monitoring the radioactive waste drum includes location information, whether the drum is open or closed, temperature and humidity, etc. To collect this information, a drum monitoring technology was built with a 2.4 G wireless router, an anchor constituting a virtual zone, a tag to be mounted on the drum container, and a WNT server that collects sensor data. The network tool provided by WirePas was used for network configuration, and the status of gateways and nodes can be monitored by interworking with the WNT server. The configured IoT sensor technology were tested in a waste storage environment. Four anchors were installed and linked to the network to match the virtual zone and the real storage zone, and it was confirmed whether the movement of the tag was recorded on the network while moving the tag including the IoT sensor for analyzing location information. Based on these research results, it can contribute to the safety management of radioactive waste and establishment of Waste Acceptance Criteria (WCP) by and managing the history and monitoring the waste in the entire cycle from repackaging to disposal.
코로나19 는 전세계인의 일상을 안정적으로 유지하기 위하여 자신의 업무를 수행하고 있는 필수업무종사자에 대한 중요성을 다시 한번 각인시켜 주었다. 이와 관련하여 국제기구 및 주요 해외국가들은 선원을 필수업무종사자로 지정하고, 선원의 역할을 수행할 수 있도록 이들을 보호하는 각종 개선안을 권고하였다. 특히 국제해사기구는 선원의 원활한 승·하선 등을 지원해 줄 것을 관련 단체 및 회원 국 등을 중심으로 촉구하고 있지만, 일부 국가들은 극단적인 자국우선주의로 인해 선원의 승·하선, 상륙, 병원진료 등을 제한하는 사례가 발생하고 있다. 이 연구는 코로나19에도 불구하고 글로벌공급망의 안전을 담당하고 있는 선원의 역할과 보호의 필요성에 대한 논리적 근 거를 마련하기 위하여 국제기구 및 주요 해외 국가의 사례를 중심으로 비교하여 분석하였다. 이 연구는 해운산업에서 필수업무종사자로서 선원의 역할과 보호의 필요성을 확인하였고, 해운산업의 회복력을 강화하는 차원에서 선원의 처우 및 복지향상을 위한 시사점의 도출 및 법제도적인 개선방안을 제시하였다. 향후 이 연구는 선원의 역할과 보호의 필요성이 국가정책에 반영될 수 있도록 하는 기초자료서 역할 을 할 것으로 기대된다.