The importance of biocomposites has increased owing to the changes in global consumption trends and rapid climate change. Technologies using mushroom mycelium cultivation, and molding methods for mycelial application have gained attention as potential strategies for producing eco-friendly composites. Currently, mushroom mycelia are used as raw materials for food and cosmetics; however, research on their utilization as biocomposite materials is limited. Therefore, the potential for the development of mushroom mycelium-related products and technologies is high. This review analyzes the domestic and international patent application trends related to the technologies for composite (packaging, insulation, adhesives, and leather) and food (substitute for meat) materials using mushroom mycelium, as an eco-friendly biocomposite material, to provide objective patent information that can further research and development (R&D) in this field.
In this review, we examine the latest technological developments in the utilization of truffles, a gourmet ingredient reputed to be one of the "world's three greatest delicacies," considering changing global consumption trends. Global demand for truffles is expected to increase steadily, with an average annual growth rate of 8.9% from 2023 to 2030. As truffles are expensive, the demand for truffles is expected to be concentrated in developed countries such as the United States, European countries, and Japan. In Korea, truffles are utilized in various industries, including food, functional foods, and cosmetics. Korean consumer demand for truffles has consistently remained high since 2019, and truffle products have been performing well in the market. Consequently, there exists substantial potential demand for newly developed truffle-related products and technologies. This review aims to provide objective research information through the systematic analysis of patent applications in Korea and internationally, focusing on technologies involving truffles, and can aid in setting directions for research and development.
In this study, research trends in mushroom science were examined using North Korean journal articles published in 1978–2023. Researchers in each field reviewed 450 papers and finally selected 429 papers, excluding 21 papers classified in different fields. The number of researchers was 872, and the number of authors per paper was 2.03. Kim Cheol-Hak published the most academic papers in the field of mushroom science in North Korea, with 12 papers. The number of research articles increased annually, from 7 in 1985, 12 in 1998, 11 in 2008, and 27 in 2020, and has especially increased rapidly since the mid- 2010s. The study by mushroom type was as follows: 42 pine mushrooms (17.8 %), 25 oyster mushrooms (10.6 %), 23 Ganoderma sp. (9.8 %), 19 shiitake mushrooms (8.1 %), 17 button mushrooms (7.2 %), and 16 manna lichens (6.8 %). This study is considered meaningful in reviewing the research status and technology level in North Korea through analyzing North Korean academic journals in the field of mushroom science for the first time.
Lyophyllum decastes has been used for culinary purpose. The present study was conducted to evaluate the antioxidant and anti-inflammatory effects from methanol, acetone, and hot water extracts of L. decastes fruiting bodies. The acetone and methanol extracts showed the higher 1,1-diphenyl-2-picryl-hydrazy radical scavenging activities than that of the hot water extract at 0.5–2.0 mg/mL and was comparable to the BHT, the positive control. The ferrous ion chelating effects of the mushroom extracts at 0.5–2.0 mg/mL were significantly higher than that of BHT. The reducing power of acetone extract (2.12) was significantly lower than that of BHT (2.73) at 2.0 mg/ mL. The mushroom extracts also showed inhibitory effects on production of nitric oxide (NO), and expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide-induced murine macrophage cells in a concentration dependent manner. In vivo anti-inflammatory experiment on carrageenan-induced hind-paw edema of rat model, the acetone extract of the mushroom significantly suppressed the carrageenan-induced rat hind paw edema of rats in a dose dependently. The results suggest that the fruiting bodies of Lyophyllum decastes are a good natural resource of antioxidant and anti-inflammation.
Cordycepin (3'-deoxyadenosine) is a nucleoside analog known for its diverse range of biological activities. This study investigated the effect of different types of sawdust on the production of the bioactive compound cordycepin. The results of the study showed that different types of wood sawdust affected the biosynthesis of cordycepin and a significant increase was observed when the conventional SDB medium was replaced with 1% NaOH treated pine sawdust. To optimize cordycepin production from Paecilomyces tenuipes in a medium containing 1% NaOH-pretreated pine sawdust, we employed Response Surface Methodology (RSM) in its Box-Behnken design (BBD) canonical form. The optimal conditions were determined as follows: a particle size of 109.5111-mesh (140 m) for 1% NaOH-pretreated pine sawdust, an input weight of 21.1679 g/L, and an incubation time of 73.8423 hours. According to our model, this combination is expected to yield a maximum cordycepin content of 896.1428 g/mL. Experimental validation of this prediction was performed using the suggested optimal conditions, resulting in an average cordycepin content of 922.6771 g/mL across three replicates, thus confirming the model's accuracy.
We conducted an on-site application study at the livestock cooperative fertilizer plant to compare the composting period, temperature change, moisture content, and chemical properties between livestock manure compost using sawdust as a moisture regulator with those using spent oyster mushroom substrate. The composting period, moisture content, and fertilizer composition of compost containing spent oyster mushroom substrate did not differ from that of conventional compost mixed with sawdust after the first and second fermentation and post-maturation stages, it was suitable as a material for manufacturing livestock manure compost. The spent oyster mushroom substrate also lower the production cost of livestock manure compost by replacing the more expensive sawdust. The developed technology is expected to contribute towards the utilization of by-products of the oyster mushroom harvest while simultaneously producing high quality livestock manure compost.
In this study, the protein content and functional changes in soybeans cultured with Phellinus linteus HN00K9 were analyzed. P. linteus HN00K9 was cultured on soybeans. The crude protein content in soybeans cultured with HN00K9 (PMS) was 41.99%, which was higher than that in soybeans not cultured with the mushroom (UCS). The total free amino acid content in PMS increased to 39,963 mg/100 g, which was higher than that in UCS (36,817 mg/100 g). In particular, in PMS, glutamic acid accounted for 18.5% of the total amino acids at 7,413 mg/100 g. The total polyphenol content in PMS was 2.66 mg GAE/g, which was more than 45% higher than the amount in UCS (1.45 mg GAE/g). Additionally, PMS showed a DPPH radical scavenging activity of 33.3%, which was 3 times higher than that exhibited by UCS (11.5%), reflecting its high antioxidant content. Therefore, the PMS in this study has potential for use as a functional food material.
Light plays an important role in fruit-body development and morphology during Pleurotus spp. cultivation. To understand the effects of light color on fruit-body properties, we evaluated the fruit-body characteristics of Pleurotus spp. varieties cultivated under blue, red, and purple LED light sources. The main results are as follows: The overall fruit-body shape showed differences depending on the color of the LED light. The fruit-bodies of mushroom cultivated under blue and purple light were generally similar to the mushroom shapes typically produced, while those of mushroom cultivated under green light were abnormally shaped, probably due to the absence of effective light source. The average cap lightness of mushrooms cultivated under blue, green, and purple LED lights was 57.0, 57.4, and 59.4, respectively. The average cap lightness of all varieties except Wonhyeong1ho and Hwang-geumsantari cultivated under the three LED light sources were statistically significantly different (P<0.05). The cap redness varied significantly depending on the LED lighting and variety. Only Gonji7hoM, the cap color mutant of Gonji7ho, showed negative cap redness values under all three LED light sources. Among the eight varieties excluding Gonji7ho, the highest cap redness was observed when cultivated under the blue LED. The average harvest weight of the varieties cultivated under purple, blue, and green LED light were 68.0, 58.3, and 50.1 g, respectively. The yield of Gonji7ho, the mushroom variety with the highest yield, cultivated under blue, green, and purple LED light were 92.8, 77.1, and 98.6 g, respectively. The earliness when grown under the purple, blue, and green LED lights were 5.3, 5.8, and 5.8 days, respectively. Among the varieties, six, three, and two cultivars showed the shortest earliness under the purple, green, and blue LED, respectively. The fruit-body lengths were 66.4, 51.8, and 46.8 mm when cultivated under green, purple, and blue lights, respectively. These results are expected to serve as a foundation for producing mushrooms with traits demanded in the market.
The objective of this study was to achieve biological control of green mold disease in Pyogo mushrooms using antagonistic microorganisms. Bacillus subtilis BSM320 cells inhibited mycelial growth by 48–60% against three Trichodermaisolates including T. hazianumisolated from the substrates of Lentinula edodes, showing their antifungal activity.The bacteria were cultured to a high density of 4.2 x 109±113.7 cfu/mlin aqueous extract of composted spent mushroom substrates of L. edodes containing 1% glucose and showed a higher growth rate than that observed when using the commercial medium, Luria-Bertani broth. The bacterial culture showed a 75% protective effect without damaging the mushroom fruiting bodies. These results suggest that B. subtilis BSM320culture is suitable for biological control of green mold disease during mushroom cultivation.
This study was conducted to reduce the phenomenon of the biased cultivation of certain mushroom varieties and to develop a competitive variety of Pleurotus nebrodensis. We have collected and tested characteristics of genetic resources from domestic and overseas varieties since 2015. We bred the domestic variety ‘Boram’. The optimal temperature was 26~29oC for mycelial growth and 15~18oC for fruit body growth temperature. This variety was similar to the control variety (Uram) in terms of the number of cultivation days and yield per bottle. The shape of the new cultivar was round, whereas that of the control group was spatula-like. The yield was 181.1 g/bottle, which was statistically similar to that of the control variety. When incubating the parent and control varieties, the replacement line was clear. Moreover, polymerase chain reaction analysis of mycelial DNA resulted in different band patterns between the parent and control varieties, confirming the hybrid species.
In this study, the growth characteristics of Lentinula edodes were confirmed by bean sprout waste(BW) as an alternative raw material for rice bran. The mycelium growth of Sanjo701, a major cultivation variety of L. edodes, was compared between a medium mixed with 8:2(v/v) of oak sawdust and a medium mixed with BW 50% and BW 100%. The mycelium growth in BW 50% was 13.5 cm. Compared to the control, BW 50% increased the diameter of the pileus by 1.6 cm. Additionally, the length of the pileus decreased by 0.4 cm when comparing the growth of the fruit body. In contrast, at BW 50%, the diameter of the pileus decreased by 9.6 cm and the length of the stipe decreased by 1.4 cm. According to analysis of the constituent amino acids, BW 50% showed a lower overall nutritional content than the control, whereas BW 100% had a lower amino acid content than the control. However, glutamic acid and aspartic acid, which are flavor-enhancing ingredients, were observed at levels of 3.954 mg/g and 1.436 mg/g, respectively, in BW 100%. Therefore, if bean sprout by-products are efficiently processed and utilized, it is believed that they will be beneficial to farmers as a substitute for rice bran and reduce the cost of manufacturing substrate
A new spore-less cultivar Lentinula edodes ‘Daedam’ was bred from monokaryotic strains of ‘LE15401-24’ and ‘LE192118-10’. The optimum temperature for mycelial growth of ‘Daedam’ on potato dextrose agar was 22~25oC. Total cultivation period of the new cultivar, from inoculation to its first harvest, was 134 days, similar to that of the control cultivar ‘Hwadam’. Total yield of ‘Daedam’ was 222g per 3kg substrate, and was lower than that of control cultivar(266.0g). The fruiting body of ‘Daedam’ had a thick and small pileus and a longer stem compare to control cultivar. As a result of a analyzing the productivity of ‘Daedam’ on the different substrate types, the biological efficiency was 26.7% in the 1.2kg cylindrical substrate(CS), which was higher than that of the 3kg rod-type substrate(RS). 'Daedam' had a similar yield compared to 'Hanacham' in first fruiting body production, but the cultivation period was 40 days shorter. Therefore, 'Daedam' can only harvest fruiting bodies once, it is thought that it can be used as spore-less oak mushroom cultivar for short-term cultivation instead of 'Hanacham' in mushroom farms.
The effects of punching treatment on mycelial culture and fruiting body productivity were investigated in a new Lentinula edodes cultivar, “Jadam”, in sawdust medium for the stable production of oak mushroom. As the punching volume and number increased, the weight loss rate and color difference increased and the L value decreased. After spawn inoculation, the sawdust medium temperature and CO2 concentration reached their highest values at 33 and 19 days of incubation, respectively. The O2 concentration showed the lowest value on the 14th day of incubation, which was the opposite pattern to the CO2 concentration. As the punching volume and the number increased, the medium temperature and O2 concentration increased, and the CO2 concentration decreased. Higher punching volumes and numbers resulted in higher temperatures and lower CO2 concentrations. The best fruiting body yield was 5 × 70 mm - 30 (punching diameter × depth - number), and the total yield after three cycles was 644.7 g.
A new brown variety of Flammulina velutipes, referred to as ‘Asakgold,’ was bred by crossing two monokaryons isolated from the “Geumhyang2ho” and “Garlmoe” varieties. The pileus color of the new variety is light brown and its shape is hemispherical. During bottle cultivation, the period necessary for mycelial growth was 40 days, 9 days for primordia formation and 15 days for fruiting body growth. The total cultivation period was 64 days, which was similar to that of the control variety “Yeoreumhyang1ho.” The pileus of the new variety was similar and the stipe was thinner and longer than that of the control. The number of valid stipes per bottle was 495, which was 37 % higher than that of the control (362), and the yield was 214 g, 16 % higher than that of the control (185 g). The -glucan content was 28.69 %, which was observed to be 1.6 times more than that of the control.
In this study, the characteristics and taste components of six different oyster mushroom cultivars (Gonji-7ho, Santari, Baekseon, Chunchu, Suhan, and Heuktari) were analyzed and compared. The Heuktari mushroom pileus had the lowest brightness index (32.8) and remained dark (brightness index: 30.5) even after blanching. The moisture content of the mushrooms was approximately 90%. The salinity and sugar contents were highest in Heuktari (5.7% and 7.1%, respectively). Gonji -7ho had the highest contraction rates, with a length contraction rate of 16.4% and thickness contraction rate of 23.9%. The total amino acid content was highest in Heuktari (537.8 mg/100 g), but the glutamine content contributing to umami taste was highest in Santari (59.4 mg/100 g) and the aspartic acid content was highest in Baekseon (33.1 mg/100 g). Among the 5?-nucleotide components, guanosine monophosphate, which enhances umami taste, was highest in Baekseon (0.7 mg/g). Baekseon was also calculated to have the highest umami taste concentration based on amino acid and nucleic acid contents (12.7 g/100 g). The results of this study serve as valuable basic data on the physicochemical characteristics of oyster mushroom cultivars grown in Korea.
The development of automated bottle cultivation systems has facilitated the large-scale production of Pleurotus ostreatus, a commonly cultivated oyster mushroom species in South Korea. However, as the consumption of this product is decreasing and production quantities are exceeding demand, farmers are seeking various other mushroom types and cultivars. In response to this, we have developed a new oyster mushroom cultivar named 'Sena'. This high-yielding cultivar has a white pileus and excellent quality. The white oyster mushroom cultivars 'Goni' and 'Miso' were selected as parental strains from the genetic resources of the National Institute of Horticultural and Herbal Science’s Mushroom Division. By crossing their monokaryons, hybrids were developed and subjected to cultivation trials and characteristic evaluations to select the superior cultivar. The optimal temperature for 'Sena' mycelial growth is 25–30°C, with inhibition occurring at temperatures above 30°C, whereas the temperature for mushroom growth is 14–18°C. The mushrooms grow in clusters, with the white pileus having a shallow funnel shape. Optimal mycelial growth occurs in malt extract agar medium. When cultivated in 1,100 cc bottles, the 'Sena' cultivar had 35 available individuals, surpassing the number 16 available from the control cultivar 'Goni'. The yield per bottle also increased by approximately 157 g, a 24% increase over the control cultivar amount. When 300 g samples of harvested mushrooms were packed and stored at 4°C in a cold storage facility for 28 days, the weight loss rate of ‘Sena’ was approximately 4.22%, lower than that of 'Goni'. Moreover, the changes in pileus and stipe whiteness (measuring 6.99 and 8.33, respectively) were also lower than those of the control cultivar. Since the appearance of a white cap is crucial for quality assessment, the 'Sena' cultivar is superior to the 'Goni' cultivar in terms of both weight and quality after undergoing lowtemperature storage.
This study was conducted to develop a renewable and sustainable bio-material to replace polystyrene (EPS) in fungal-mycelium-based composite using agricultural by-products. Four mushrooms (Ganoderma lucidum, Fomitella fraxinea, Phellinus linteus, and Schizophyllum commune) were cultured in an oak sawdust plus rice bran substrate to select the mushroom with the best growth. The mycelia of G. lucidum showed the best growth. To investigate the optimal mixing ratio with spent mushroom substrate (SM) and oak sawdust (OS), samples were prepared by mixing SM and OS at ratios of 50%:50%, 60%:40%, and 80%:20% (w/w). Each substrate was then inoculated with G. lucidum. G. lucidum showed the best mycelial growth of 140.0 mm in the substrate with SM and OS mixed at a 60%:40% ratio. It was also found that the substrate with SM and OS mixed at a 60%:40% ratio had the best handling properties. The compressive strength of mycelial materials inoculated with G. lucidum was in the range of 300–302 kgf mm-1, and the materials were four times stronger than polystyrene materials. These results indicate that substrates comprising spent mushroom substrate mixed with oak sawdust can be successfully upcycled to mycelium-based composite materials using G. lucidum. This represents a sustainable approach.
To cultivate pine mushroom (Tricholoma matsutake) artificially, co-cultivation with microorganisms has been introduced. Here, experiments were performed to assess the growth-promoting effect of bacteria on T. matsutake mycelia. Bacteria were isolated from soil samples collected in Yangyang County, Korea. Four of the bacterial isolates (Y22_B06, Y22_B11, Y22_B18, and Y22_B22) exhibited a growth-promoting effect on T. matsutake mycelia (154.67%, 125.91%, 134.06%, and 158.28%, respectively). To analyze the characteristics of the bacteria, especially the antifungal activity, -amylase and cellulase activity assays were performed. In comparison with the controls, the isolated bacteria exhibited low -amylase and cellulase activity. 16S rRNA gene sequencing was performed to identify the four bacterial isolates. The isolates belonged to the Terrabacteria group and were identified as Microbacterium paraoxydans, Paenibacillus castaneae, Peribacillus frigoritolerans, and P. butanolivorans. These bacterial isolates are expected to have contributed to the growth promotion of T. matsutake mycelia and the artificial cultivation of T. matsutake.