To minimize cultivation costs, prevent insect-pest infestation, and improve the production efficiency of thermophilic mushrooms, plant substrates obtainedfrom local areas in Cambodia were used for production of both spawn and mushrooms. In this experiment, different sawdusts different organic wastes and grain ingredients and analyzed for improvement of spawnproduction efficiency. Four thermophilic mushroom species, Pleurotus sajor-caju (oyster mushroom, Sambok), Ganoderma lucidum (deer horn shaped), Auricularia auricula (ear mushroom), and Lentinula edodes (shiitake), were used to identify efficient new substrates for spawn and mushroom production. Although the mycelia in the rubber tree sawdust medium showed a slightly slower growth rate (10.9 cm/15 days) than mycelia grown in grains (11.2 cm/15 days in rice seeds), rubber tree sawdust appeared to be an adequate replacement for grain spawn substrates. Th findings indicate that rubber tree sawdust, sugarcane bagasse, and acaciatree sawdust supplemented with rice bran and calcium carbonate could be new alternative the substrates for . Although sugarcane bagasse and rubber tree sawdust showed similarly high biological efficiencies (BE) of 60% and 60.8%, respectively, acacia tree sawdust exhibited relatively a low biological efficiency of 22.4%. However, it is expected that acacia sawdust has potential for the mushroom cultivation when supplemented with currently used sawdust substrates in Cambodia, because of its relatively low price. The price of the sawdust (20 kg sawdust= 6500 Riel or 1.6 USD) currently used was 6.5 times higher than the price of acacia sawdust (201000 Riel or 0.25 )USD). Therefore, utilization for acacia sawdust for mushroom cultivation could become feasible as it would reduce by producing costs of mushrooms in rural areas of Cambodia.
This study was carried out to determine the basic mycelial culture conditions for Poria cocos growth. According to colony diameter and mycelial density, suitable media for mycelial growth were Malt yeast extract, Potato dextrose agar, Yeast extract agar, and Yeast malt agar. The optimum temperature for mycelial growth was between 25 and 35oC, and the optimum pH value was between 4 and 7. Carbon and nitrogen sources were fructose and yeast extract. The optimum C/N ratio was about 10 to 1 with 2% glucose. Other minor components for optimal growth were thiamine-HCl and nicotinamide as vitamins, acetic and lactic acid as organic acids, and MgSO4·7H2O and FeSO4·7H2O as mineral salts.
This study was conducted to establish replacement the corncob used in winter mushroom bottle cultivation. Corncob is unstable quality in moisture content or total nitrogen(T-N) content. Fruit body yields according to the ratio of cassava stem chips mixing were compared. After treatment-1 and treatment-2, fruit body yields increased by 8.8% and 5.4% and raw material cost decreased by 7% and 19%. The results showed that cassava stem chips could replace 33% to 67% of corncob for winter mushroom bottle cultivation.
The mannanase-producing bacteria, designated YJ17, was isolated from spent mushroom (Flammulina velutipes) substrates. The isolate YJ17 was a facultative anaerobic and was grown at temperatures ranging from 20oC to 50oC with an optimal temperature of 40oC. The DNA G+C content of the YJ17 was 44 mol%. The major fatty acids were anteiso-15:0 (38.9%), 17:0 (7.6%), and iso-15:0 (36.5%). The 16S rRNA gene sequence similarity between the isolate YJ17 and other Bacillus strains was from 98% to 99%. In the phylogenetic analysis based on these sequences, the isolate YJ17 and Bacillus amyloliquefaciens clustered within a group together and separated from other species of Bacillus. Based on the physiological and molecular properties, the isolate YJ17 was classified within the genus Bacillus as B. amyloliquefaciens YJ17. The optimal pH and temperature for mannanase activity of B. amyloliquefaciens YJ17 were pH 7.0 and 50oC, respectively.