검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2023.05 구독 인증기관·개인회원 무료
        Metals such as stainless steel and alloy 600 are used as structures and materials in nuclear power plants due to their excellent mechanical properties and heat resistance. And recently thermal and mechanical cutting technologies are being actively researched and developed for dismantling NPP. Among them, the mechanical cutting method has the advantage of less secondary waste generation such as fume and fine dust, but according to the wider the cutting range, the reaction force and the cutting device size are increased. In this paper, plasma assisted milling has been proposed to reduce the reaction force and device size, and the plasma efficiency was measured for SUS 316L. The plasma torch was operated at the level of 3 to 4 kW so that it was heated only without cutting. And the feedrate was set at 150 to 250 mm/min. The test confirmed that the plasma efficiency was 35% about SUS 316L, and it is expected that the numerical analysis using these test results can be used as basic data for plasma assisted milling.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Various cutting technologies such as thermal and mechanical are being researched and developed to dismantle shutdown nuclear power plants. Each technology has the following advantages and disadvantages. The thermal cutting method has low reaction force and fast cutting speed, but secondary waste such as fume, dross, and fine dust is generated. The mechanical cutting method has the advantage of low generation of secondary waste such as fume, dross, and fine dust, but has the disadvantage of increasing the size of the device due to its large reaction force. In this study, the performance of plasma milling robot cutting technology for nuclear power plant materials was evaluated. First, before applying plasma auxiliary milling to the robot, tests were conducted on SUS 316 L and Alloy 600 to secure processing conditions such as plasma torch output and transfer speed. The test have shown that the mechanical strength was decreased of each material at the output power of the plasma torch of 4.4 and 8.4 kW, the transfer speed of 200 and 100 mm/min. Based on the test results, a plasma milling was attached to the robot and tested, and it was confirmed that even a small robot with a load of 140 kg can cut without any major problems.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Normally, non-metallic wastes, such as sands, concrete and asbestos are regarded as electrically non-conductive materials. However, when the temperatures are increased up to the melting point, their electrical conductivities can be greatly improved, flowing arc current. Accordingly, these nonmetallic wastes can be efficiently treated by heating them up to the electrically conducting temperatures by using a non-transferred type plasma torch, and then, melting them completely with arc currents in transferred mode of plasma torch. For this purpose, we propose a convertible plasma torch consisting of three cylindrical electrodes (rear electrode, front electrode and exit nozzle). Compared with conventional plasma torch with two cylindrical electrodes (rear electrode and front electrode), the proposed plasma torch can provide more stable plasma jet in high powered and non-transferred mode due to the presence of exit nozzle, resulting in rapid heating of the non-conductive materials.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Nowadays, transferred type arc plasma torches have been widely present in industrial applications, in particular, using melting pool of electrically conducting materials such as arc furnace, welding and volume reduction of radioactive wastes. In these applications, the melting pools are normally employed as an anode, thus, heat flux distributions on anode melting pool need to be characterized for optimum design of melting pool system. For this purpose, we revisited the one-dimensional model of the anode boundary layer of arcs and solved governing equations numerically by using Runge-Kutta method. In addition, the direct melting process of non-combustible wastes in the crucibles were discussed with the calculation results.
        5.
        2023.05 구독 인증기관·개인회원 무료
        In this work, we report test results for direct melting of non-combustible wastes by using a 100 kW class transferred type plasma torch. For this purpose, non-combustible wastes consisting of metals and sands were prepared, weighed and melted by a transferred arc in a ceramic crucible with inner diameter of 150 mm. Test results reveal that 75wt% M6 iron bolts mixed with 25wt% sands were completely melted down within 140 seconds at the plasma power level of 83.8 kW, producing melting speed of 100 kg/hr and volume reduction rate of 62.8%. In addition, for simulated wastes consisting of 77.3wt% metal chips and 22.7wt% sands, the volume reduction rate high than 88% was achieved at 50 kW plasma power. These results indicate that non-combustible wastes can be treated efficiently when directly melting them by using transferred type plasma torch.
        6.
        2023.05 구독 인증기관·개인회원 무료
        Depending on the type of waste, DC plasma torch uses a transfer type operation for conductive waste and a non-transfer type operation for non-conductive waste. The transfer mode plasma torch can secure high throughput because the arc directly contacts the object and has high thermal efficiency. However, since the non-transfer mode does not have a higher thermal efficiency than the transfer mode, higher output is required to secure high throughput. A method of increasing the output of the plasma torch is increasing the current or extending the length of the plasma arc. However, the method of increasing the current affects the life of the electrode, and there is a limit to extending the arc length in the positive polarity plasma torch. Therefore, it is effective to design the plasma torch with reverse polarity to secure life and extend the arc length. In the reverse polarity plasma torch, the front electrode serves as the cathode, and the cathode point is not easy to control compared to the anode point, which may cause abnormal arcing and damage the plasma torch. This paper was conducted to investigate the conditions for securing the safety of these non-transferable reverse polarity plasma torch. The plasma torch is designed to have an output of 100 kW or less and to use the detachable nozzle to control the cathode point. The test showed that the shape of the nozzle prevented the cathode point moving outside of plasma torch and the excessive extension of the arc. Thanks to this, it was confirmed that plasma could be stably formed and abnormal arcing could also be prevented.
        7.
        2023.05 구독 인증기관·개인회원 무료
        It is important that the plasma torch used in the waste treatment field has a high output to increase throughput. In order to increase the output of the plasma torch, there is a method of increasing the current or extending the length of the plasma arc. Among these methods, high power can be easily achieved simply by increasing current, but it is difficult to ensure electrode life. Therefore, it is necessary to check the appropriate current and arc length conditions to achieve high power and stable operation. In this paper, the power performance according to the arc length, current, and operation mode was confirmed in the transfer mode plasma torch. The test conditions are the distance (arc length) between the plasma torch and the external electrode was set to 5-180 mm, and the current was set to be in the range of 90-460 A. As a result of the test, it was confirmed that the reverse polarity operation had a maximum output of 159 kW depending on the arc length and current, and the positive polarity operation had a maximum output of 138 kW. Through this result, it was confirmed that the arc length had an effect on increasing the output, and that the reverse polarity operation had a longer arc than the positive polarity operation.
        8.
        2023.05 구독 인증기관·개인회원 무료
        DC plasma torch is reported as a technology that can be treated regardless of waste types because it can select transfer or non-transfer operation modes depending on the electrical conductivity of waste. Thanks to this characteristic, countries that operate nuclear power plants such as Switzerland, Japan, and Taiwan have developed high-power DC plasma torch to dispose of radioactive waste. And also in korea, a plasma torch is being developed to dispose of radioactive waste. This study was conducted to investigate the characteristics of the reverse polarity plasma torch according to the conditions of interelectrodes. The inter-electrodes of plasma torch used in the study was designed to be 25, 37 mm in diameter and 180 to 400 mm in length. As a result of the test, it was confirmed that the smaller the diameter and the longer the length of the inter-electrode, the more advantageous it was to achieve a high output power. And it was confirmed that the power torch would be 500 kW when the diameter of the inter-electrode was 25 mm, the length was 400 mm, and the current was 500 A.
        9.
        2022.10 구독 인증기관·개인회원 무료
        In the present work, a three-phase AC arc plasma torch system is proposed to separate inorganic radioactive materials from the organic liquid waste. For this purpose, first, assuming the resistance of arc plasma ranges between 0.1 and 0.2 ohm, we designed a three-phase AC arc plasma power supply with the power level of 20 kW. Then, a three phase arc plasma torch consisting of three carbon rods with the diameter of 20 mm was designed and mounted on a cylindrical combustion chamber with the inner diameter of 150 mm. Detail design and basic performance of the plasma system were presented and discussed for application to the treatment of radioactive slurry wastes.
        10.
        2022.10 구독 인증기관·개인회원 무료
        In this work, we report the basic performance of a 100 kW class mobile plasma melting system consisting of two 24-ft commercial containers, each in charge of the plasma utilities and melting process. In this system, a 100 kW class transferred type plasma torch has been installed together with a crucible having an inner volume of 2,884 cm3. Filling the inner volume of the crucible with the simulated metal waste, such as bolts and nuts, melting tests have been carried out for 5 min by varying plasma input power from 50 kW to 100 kW. By measuring the volume of metal waste before and after melting test, then, the volume reduction rates were estimated and discussed.
        11.
        2022.10 구독 인증기관·개인회원 무료
        We developed a 100 kW Class Transferred Type Plasma Torch applicable for melting of noncombustible metal wastes. By employing reverse polarity discharge structures for hollow electrode plasma torch, a transferred type arc plasma was generated stably with long arc length higher than 10 cm at the arc currents of ~400 A and gas (N2) flow rate of ~50 lpm. High arc currents and high arc voltages caused by the increased arc length could input high power level of ~100 kW to the noncombustible metal wastes, enabling quick melting. In addition, relatively long arc length and low gas flow rates can help reduce the deposition of melted materials on the exit surface of the torch. Thanks to these features, the developed plasma torch is expected to be suitable for small-scaled and portable melting system.
        12.
        2022.10 구독 인증기관·개인회원 무료
        Filtering nuclides in high-level nuclear waste using rotating plasmas is a physical separation method based on mass difference. Since it is not chemical separation or metallurgical separation, the elements are separated regardless of their chemical composition. Accordingly, the more the number of chemical elements present in the waste or the more difficult when using the differences in solubility, the more advantageous. However, to be economically competitive, new concepts for rotating plasmas are needed to improve the poor separation rates despite high energy and installation costs. In this work, we revisited a counter rotating plasma centrifuge to examine its potential as an effective device for separating nuclear waste efficiently and economically.
        13.
        2022.05 구독 인증기관·개인회원 무료
        In this work, we introduce a 100 kW class mobile plasma melting system designed for non-combustible radioactive wastes treatment. To ensure mobility, the designed system consists of two 24-ft commercial containers, each in charge of the plasma utilities and melting process. In the container for plasma utilities, a 100 kW class DC power supply is installed together with a chiller and gas supply system whereas the container for melting process has a transferred type arc melter as well as off-gas treatment system consisting of a heat exchanger, filtrations, scrubber and NOx removal system. As a heat source for a transferred type arc melter, we adopted a hollow electrode plasma torch with reverse polarity discharge structure. Detailed design for a 100 kW class mobile plasma melting system will be presented together with the main specifications of the components. In addition, the basic performance data of the melting system is also presented and discussed.
        17.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, a PAM(Plasma Assisted Machining) technology was applied to milling of high manganese steel, a typical hard-to-machine materials. For this purpose, a transferred type of arc plasma torch was coupled with a 3-axis milling machine, then, used to heat and soften the surface of a high manganese steel plate in front of a 16 mm end mill with 2 blades and hard coatings. From the test results, it was concluded that the cutting load can be significantly reduced down to 57 % by plasma heating with the power level of 3.9 kW, ensuring the improvement of tool life and surface roughness in milling of high manganese work pieces.
        4,000원
        18.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 2015년에서 2017년 사이에 유럽항공우주국 Sentinel-1 위성이 촬영한 Synthetic Aperture Radar (SAR) 영상을 활용하여 한강 유역 내 하천의 유량을 추정하는 모형을 개발하였다. 한강 유역 내 15개 중소규모 하천을 연구지역으로 선정하였으며 SAR 인공위성 영상 자료와 수위 및 유량관측소에서 산정한 유량 자료를 모형 구축을 위하여 사용하였다. 우선, 오류 보정을 위해 다양한 전처리 과정을 거친 12장의 SAR 영상 을 히스토그램 매칭 기법을 적용하여 이미지의 밝기 분포를 동일하게 만들었다. 이후 임계치 분류방식을 사용하여 추출된 하천 수체의 면적과 지상 관측유량자료와의 관계식을 도출하여 유량추정모형을 구축하였다. 그 결과, 1개소를 제외한 14개 관측소에서 인공위성에서 추출한 하천 면적을 입력 자료로 하는 멱함수 형태의 유량추정모형을 구축할 수 있었다. 14개 관측소의 최소, 평균, 최대 결정 계수(R2)는 0.3, 0.8, 0.99로 나타났다.