본 연구는 Veronica속 20종의 생장 및 개화 특성을 평가하기 위해 2년 동안 국립수목원 식물자원연구과 육종온실에서 수행하였다. Veronica속 식물은 다양한 생장 및 개화 특성을 가지고 있었다. 꼬리풀 20종을 식물 형태 및 초장에 따라 분류하였다. 포복형의 10cm 미만 초장은 V. armena와 V. repens, 직립형 30cm 미만 초장은 V. gentianoides ‘Little blues’ 등 4종, 직립형 30~60cm 사이 초장은 V. gentianoides ‘Blue Streak’ 등 7종, 직립형 60cm 이상 초장은 V. incana 등 7종이었다. 대부분의 엽색은 초록색이었고 V. incana와 V. incana ‘Silbersee’는 잎에 흰 털이 있었다. 꽃대 수는 5.3개부터 80.7개, 화수는 4.5개부터 67.3개였고 개화일은 3월 초순부터 6월 중순이었다. 화서의 형태는 총상화서, 수상화서, 취산화서로 분류하였다. 화색은 보라색 13종, 분홍색 2종, 흰색 5종이었다. 2017년 모든 개체가 개화한 종은 3종으로 V. longifolia ‘Blue Shades’, V. spicata ‘Blue Bouquet’, V. subsessilis ‘Blue Pyramid’였고, 일부 개체만 개화한 종은 7종으로 V. armena, V. gentianoides ‘Little Blues’, V. longifolia ‘Alba’, V. prostrata ‘Nestor’, V. spicata, V. spicata ‘Alba’, V. spicata ‘Sightseeing’ 이었다. 모든 개체가 개화하지 않은 종은 10종으로 V. gentianoides ‘Blue Streak’, V. incana, V. incana ‘Silbersee’, V. longifolia ‘Pink Shades’, V. orchidea ‘Blue Fingers’, V. repens, V. schmidtiana, V. spicata ‘Blue Carpet’, V. spicata ‘Pink Goblin’, V. teucrium ‘Royal Blue’였다. 반면, 2018년에는 모든 종의 개체가 개화하였다.
In 2017, a total of 82 non-target species representing six orders of insects were captured in four types of tephritid fruit fly (Diptera: Tephritidae) surveillance traps located in Korea; the species included 6 families of Coleoptera, 1 of Dictyoptera, 17 of Diptera, 2 of Hemiptera, 3 of Hymenoptera, 1 of Neuroptera, 4 of Lepidoptera, and 1 of Raphidioptera. Of these, Diptera were the most abundant; the main families included Muscidae, Tephritidae, and Anthomyiidae. Herein, based on a survey, we present a list of the species of non-target insects captured in the tephritid fruit fly surveillance traps.
Three species of the genus Neolygus Knight - N. hakusanensis (Yasunaga, 1991), N. roseus (Yasunaga, 1991) and N. zhugei (Yasunaga, 1991) - are recognized for the first time in Korea. An identification key to the eleven Korean Neolygus species is presented. Some illustrations of male genitalic structures are also provided.
Advanced oxidation processes involving O3/H2O2 and O3/catalyst were used to compare the degradability and the effect of pH on the oxidation of 1,4-dioxane. Oxidation processes were carried out in a bubble column reactor under different pH. Initial hydrogen peroxide concentration was 3.52 mM in O3/H2O2 process and 115 g/L (0.65 wt.%) of activated carbon impregnated with palladium was packed in O3/catalyst column.
1,4-dioxane concentration was reduced steadily with reaction time in O3/H2O2 oxidation process, however, in case of O3/catalyst process, about 50~75% of 1,4-dioxane was degraded only in 5 minutes after reaction. Overall reaction efficiency of O3/catalyst was also higher than that of O3/H2O2 process.
TOC and CODCr were analyzed in order to examine the oxidation characteristics with O3/H2O2 and O3/catalyst process. The results of CODCr removal efficiency and ΔTOC/ΔThOC ratio in O3/catalyst process gave that this process could more proceed the oxidation reaction than O3/H2O2 oxidation process. Therefore, it was considered that O3/catalyst advanced oxidation process could be used as a effective oxidation process for removing non-degradable toxic organic materials.
Molecular markers were used to map and characterize quantitative trait loci (QTLs) for traits related to cold tolerance in an intrasubspecif ic backcross population of r ice. The parents of the cross were a cold susceptible Tongil-type cultivar 'Milyang23
The variation of microorganisms (activated sludge, Saccharomyces cerevisiae, Aureobasidium pullulans) caused by the biosorption of Pb2+ was observed by TEM and microscope. By the TEM observation of S. cerevisiae, the plasmolysis and lysis of cell wall or cell membrane were occurred by the penetration of Pb2+ into the inner cellular region. However, in the case of A pullulans, the plasmolysis and lysis of cell wall or cell membrane were not occurred because of the prevention of Pb2+ penetration by the extracelluar polymeric substances (EPS). A flocculation of microorganisms, in the case of A. pullulans, was observed by the Pb2+ accumulation after 3∼4 h and the color was changed from white to black after 1 day. The flocculation of activated sludge was improved by the accumulation Pb2+ after 1 h, however, the floc was broken up and the settling efficiency decreased after 1 day.