PURPOSES : The objective of this study is to develop a pavement rehabilitation decision tree considering current pavement condition by evaluating severity and distress types such as roughness, cracking and rutting.
METHODS: To improve the proposed overall rehabilitation decision tree, current decision tree from Korea and decision trees from other countries were summarized and investigated. The problem when applying the current rehabilitation method obtained from the decision tree applied in Seoul was further analyzed. It was found that the current decision trees do not consider different distress characteristics such as crack type, road types and functions. Because of this, different distress values for IRI, crack rate and plastic deformation was added to the proposed decision tree to properly recommend appropriate pavement rehabilitation. Utilizing the 2017 Seoul pavement management system data and considering all factors as discussed, the proposed overall decision tree was revised and improved. RESULTS: In this study, the type of crack was included to the decision tree. Meanwhile current design thickness and special asphalt mixture were studied and improved to be applied on different pavement condition. In addition, the improved decision tree was incorporated with the Seoul asphalt overlay design program. In the case of Seoul's rehabilitation budget, rehabilitation budget can be optimized if a 25mm milling and overlay thickness is used.
CONCLUSIONS: A practical and theoretical evaluation tool in pavement rehabilitation design was presented and proposed for Seoul City.
PURPOSES : The objective of this study is to develop a simple regression model in designing the asphalt concrete (AC) overlay thickness using the Mechanistic-empirical pavement design guide (MEPDG) program. METHODS: To establish the AC overlay design equation, multiple regression analyses were performed based on the synthetic database for AC thickness design, which was generated using the MEPDG program. The climate in Seoul city, a modified Hirsh model for determining dynamic modulus of asphalt material, and a new damaged master curve approach were used in this study. Meanwhile, the proposed rutting model developed in Seoul city was then used to calibrate the rutting model in the MEPDG program. The AC overlay design equation is a function of the total AC thickness, the ratio of AC overlay thickness and existing AC thickness, the ratio of existing AC modulus and AC overlay modulus, the subgrade condition, and the annual average daily truck traffic (AADTT). RESULTS: The regression model was verified by comparing the predicted AC thickness, the AADTT from the model and the MEPDG. The regression model shows a correlation coefficient of 0.98 in determining the AC thickness and 0.97 in determining AADTT. In addition, the data in Seoul city was used to validate the regression model. The result shows that correlation coefficient between the predicted and measured AADTT is 0.64. This indicates that the current model is more accuracy than the previous study which showed a correlation coefficient of 0.427. CONCLUSIONS: The high correlation coefficient values indicate that the regression equations can predict the AC thickness accurately.
PURPOSES: Analysis and design of asphalt concrete (AC) and continuously reinforced concrete (CRC) composite pavements. METHODS: In this study, the service life of the AC/CRC composite pavements was determined based on the probabilistic method in the mechanistic-empirical pavement design guide(MEPDG). Typical pavement design was provided with respect to heavy truck traffic volume of highways. RESULTS: The service life of the composite pavements based on IRI was shorter than that based on rutting at lower traffic volume, but this trend was switched at higher traffic volume. CONCLUSIONS : It is concluded that the main distress affecting the service life of the composite pavements was longitudinal roughness and rutting. Roughness became lower, but rut depth became greater as the stiffness of the CRC increased.
PURPOSES : The objective of this study is to analyze the performance of anti-stripping agent depending on its type and content to reduce pothole, an increasing pavement distress due to abnormal climate intensity. METHODS : In the past years, U.S and many countries in Europe use hydrated lime and liquid anti-stripping agent in asphalt mixtures. Hydrated lime or liquid anti-stripping agent is substituted for filler and binder, respectively, to improve the anti-stripping property of asphalt mixtures. To investigate this, indirect tensile strength test was performed and TSR values were compared for different content of hydrated lime and types of liquid anti-stripping agent in asphalt mixture. RESULTS : Test results indicate that hydrated lime remarkably increased the asphalt mixture performance on anti-stripping denoted by the increased in TSR values from 55% to 100%. Liquid anti-stripping agent also increased the value of TSR but not significant. In addition, depending on the types of aggregate, TSR values and effect of liquid anti-stripping were different. CONCLUSIONS : Using anti-stripping agents improve the anti-stripping property of asphalt mixture especially hydrated lime; however, more experiments should be conducted to improve the reliability about the effect of liquid anti-stripping agent.
PURPOSES : The objective of this study is to evaluate the effect of physical characteristics of emulsion asphalt and aggregate on performance of chip seal pavements. METHODS : In order to evaluate the performance of chip seal materials, the sweep tests and Vialit Plate Shock tests were conducted on the mixtures with five emulsion asphalt binders and three aggregate types. The sweep tests was intended to investigate the change of bonding properties between emulsion asphalt and aggregate with curing time. The Vialit Plate Shock test was used to evaluate the bonding properties of chip seal materials at low temperatures. RESULTS : Results from sweep tests showed that polymer modified emulsion asphalt can reduce the curing time by 1.5 hour comparing with typical emulsion asphalt. It is also found that the Flakiness Index of aggregates and absorption rate of binder are the major factors affecting the bonding properties of chip seal materials. The Vialit Plate Shock test results showed that the average aggregate loss of CRS-2 is ten times higher than CRS-2P No.2 indicating that the use of polymer additives in emulsion asphalt can improve the performance of chip seal materials in low temperature region. CONCLUSIONS : The use of polymer in emulsion asphalt can decrease the curing time of chip seal materials and increase the bonding properties between aggregates and asphalt binder. It is also concluded that the lower Flakiness Index and absorption rate of aggregates can improve the performance of chip seal pavement.
PURPOSES: The objective of this study is to analyze and evaluate the behavior of orthotropic steel bridge deck pavement using three-dimensional finite element analysis and full-scale wheel load testing. METHODS: Since the layer thickness and material properties used in the bridge deck pavement are different from its condition, it is very difficult to measure and access the behavior of bridge deck pavement in the field. To solve this problem, the full-scale wheel load testing was conducted on the PSMA/Mastic bridge deck pavement and the deflection of bridge deck and horizontal tensile strain on top of pavement were measured under the loading condition. Three-dimensional finite element analysis was conducted to predict the behavior of bridge deck pavement and the predicted deflection and tensile strain values are compared with measured values from the wheel loading testing. RESULTS: Test results showed that the predicted deflections are 10% lower than measured ones and the error between predicted and measured horizontal tensile strain values is less than 2% in the critical location. CONCLUSIONS: The fact indicates that the proposed the analysis is found to be accurate for estimating the behavior of bridge deck pavements.