검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,669

        82.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current work, we have developed a new composite catalyst for methanol oxidation based on Ni and/or NiO incorporated in activated carbon (AC) derived from agricultural wastes (Rice straw). The new electrocatalysts based on nickel-activated carbon (Ni/AC) and nickel oxide-activated carbon (NiO/AC) composites were prepared by electroless plating technique. Physico-chemical characteristics of the composites such as structure, composition and morphology were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and particle size analyzer. The electrochemical activity of the prepared composites towards methanol electrooxidation reaction (MOR) has been evaluated under alkaline conditions by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. Among the examined electrodes, the electrochemical performance of NiO/AC preceded either Ni/ AC or Ni free AC and showed better stability. The dispersion of different forms of Ni in activated carbon in case of NiO/AC electrode is predicted to give rise to the increase in electrocatalytic activity in the potential range under study and makes it more resistant to poisoning by the byproduct of methanol oxidation. The effect of changing methanol concentrations and scan rates on the electrochemical characteristics of the modified electrode was studied and it was found that the diffusion process is controlled by methanol rather than OH− ions.
        4,800원
        83.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate 20 post-coronal mass ejection (CME) blobs formed in the post-CME current sheet (CS) that were observed by K-Cor on 2017 September 10. By visual inspection of the trajectories and projected speed variations of each blob, we nd that all blobs except one show irregular \zigzag" trajectories resembling transverse oscillatory motions along the CS, and have at least one oscillatory pattern in their instantaneous radial speeds. Their oscillation periods are ranging from 30 to 91 s and their speed amplitudes from 128 to 902 kms􀀀1. Among 19 blobs, 10 blobs have experienced at least two cycles of radial speed oscillations with di erent speed amplitudes and periods, while 9 blobs undergo one oscillation cycle. To examine whether or not the apparent speed oscillations can be explained by vortex shedding, we estimate the quantitative parameter of vortex shedding, the Strouhal number, by using the observed lateral widths, linear speeds, and oscillation periods of the blobs. We then compare our estimates with theoretical and experimental results from MHD simulations and uid dynamic experiments. We nd that the observed Strouhal numbers range from 0.2 to 2.1, consistent with those (0.15{3.0) from uid dynamic experiments of blu spheres, while they are higher than those (0.15{0.25) from MHD simulations of cylindrical shapes. We thus nd that blobs formed in a post-CME CS undergo kinematic oscillations caused by uid dynamic vortex shedding. The vortex shedding is driven by the interaction of the outward-moving blob having a blu spherical shape with the background plasma in the post-CME CS.
        4,000원
        84.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Engineering the microstructure of the carbonaceous materials is a promising strategy to enhance the capacitive performance of supercapacitors. In this work, nanostructured Black Pearl (1500 BP) carbon which is a conductive carbon being commercially used in printing rolls, conductive packaging, conductive paints, etc. is analyzed for its feasibility as an electrode material for Electric Double-Layer Capacitors (EDLCs). To achieve that commercial Black Pearl (BP), carbon is treated with mild acid H3PO4 to remove the impurities and enhance the active sites by regulating the growth of agglomerates and creating micropores in the nano-pigments. Generally, the coalescence of nanoparticles owing to their intrinsic surface energy has tendency to create voids of different sizes that act like meso/micropores facilitating the diffusion of ions. The electrochemical performance of BP carbon before and after chemical activation is investigated in aqueous ( H2SO4, KOH and KCl) and a non-aqueous electrolyte (1 M TEMABF4 in acetonitrile) environment employing different electrochemical techniques such as Cyclic Voltammetry (CV), Galvanostatic charge/discharge (GCD) and Electrochemical Impendence Spectroscopy (EIS). The chemically activated BP carbon delivers the highest specific capacitance of ∼156 F g−1 in an aqueous electrolyte, 6 M KOH. The highest specific power, ~ 15.3 kW kg−1 and specific energy, 14.6 Wh kg−1 are obtained with a symmetric capacitor employing non-aqueous electrolyte because of its high working potential, 2.5 V.
        4,000원
        85.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Processing and characterization of graphene (Gr)-reinforced aluminium alloy 7075 (AA7075) microcomposites and nanocomposites are reported in this work. Composites are fabricated by mechanical alloying process at wet conditions. The bulk composites are prepared by uniaxial die pressing to get higher densification and sintered in an inert atmosphere. Density of the nanocomposites is higher than the microcomposites due to the reduction of grain size by increased milling time. X-ray diffraction (XRD) analysis confirms graphene interaction with the AA7075 matrix lattice spaces. The effective distribution of graphene with aluminium alloy is further confirmed by the Transmission Electron Microscopy (TEM) analysis. The hardness of the composites proportionally increases with the graphene addition owing to grain refinement. Wear morphology is characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Microcomposites reveal abrasive and ploughing wear mechanism of material removal from the surface. Nanocomposites show adhesive wear with delamination and particle pull-out from the material surface.
        4,300원
        86.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents a Raman spectroscopy study of the influence of methane flow on the micro-tribological behavior of diamond-like carbon coatings deposited with an industrial plasma-enhanced chemical vapor deposition system. Results have shown a direct relationship between the methane flow and thickness of the coatings. The analysis of the Raman spectra and deposition parameters allowed establishing the influence of H content with the methane flow, the disorder level and estimation of the sp3 fraction on the carbon coatings. The micro-tribology tests showed a strong dependence of the wear resistance and hardness with Raman parameters. The coating deposited at 72-sccm methane flow presented a thickness of 1.7 μm and a sp3 fraction of 0.33. This sp3 fraction gave rise to a hardness of 24 GPa and an excellent wear resistance of 3.3 × 10–6 mm3 N−1 mm−1 for this DLC coating. Wear tests showed a swelling in the wear profiles on this coating, which was associated with the occurrence of a re-hybridization process.
        4,000원
        87.
        2021.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Background/Aim: Endoscopic retrograde cholangiopancreatography (ERCP) training requires varying degrees of staff assistance regarding operation of the fluoroscopy machine via a foot pedal. Efficiency is important to acquire during this training due to radiation risks. In this study, we evaluate the effect of controlling endoscopy and fluoroscopy unit on duct cannulation rates (CRs) and total fluoroscopy time (FT) for fellows in training. Methods: 204 patients undergoing ERCP were randomized to one of two groups: 1) “Endoscopist Driven” group in which the endoscopist controlled the foot pedal for fluoroscopy, and 2) “Assistant Driven” group in which attending or fellow controlled the foot pedal while the other team member controlled the endoscope. Various measures including selective duct CR and total FT were recorded. Results: There was no significant difference in mean procedure duration between the two groups (32 minutes vs. 33 minutes, p=0.70). There was also no statistically significant difference in CR (83.7% vs. 77.4%, p=0.25) or FT (3.27 minutes vs. 3.54 minutes, p=0.48). Conclusions: ERCP is a technically challenging procedure which requires extensive supervision. This study demonstrates that CR and FT are not affected by who controls the fluoroscopy.
        4,000원
        88.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nickel nanopowders are obtained by the spark discharge method, which is based on the evaporation of the electrode surface under the action of the discharge current, followed by vapor condensation and the formation of nanoparticles. Nickel electrodes with a purity of 99.99% are used to synthesize the nickel nanoparticles in the setup. Nitrogen is used as the carrier gas with a purity of 99.998%. XRD, TEM, and EDX analyses of the nanopowders are performed. Moreover, HRTEM images with measured interplanar spacings are obtained. In the nickel nanopowder samples, a phase of approximately 90 wt% with an expanded crystal lattice of 6.5% on average is found. The results indicate an unusual process of nickel nanoparticle formation when the spark discharge method is employed.
        3,000원
        89.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The nutritional value and yield of mushrooms depend on the substrate on which it is grown. This study sought to biofortify Pleurotus floridanus with calcium supplements and assess its effect on the yield and calcium levels. The experiment was set up in a 2 × 5 factorial and replicated thrice in a completely randomized design. Two calcium supplements, OML and OMW, were added to two growth media. The examination of total dry weight yield showed that calcium supplements OML and OMW in the sawdust medium containing wheatbran in the ratio 1:10 had a mean value of 4.37 g, which was significantly higher (P < 0.05) than that in the control (1.29 g). However, in the sawdust-only medium, there was no significant difference (p > 0.05) in the application of treatments. No significant difference (p > 0.05) was observed between the calcium types in both growth media. The mineral analysis showed that calcium levels were increased in harvested mushrooms with the addition of calcium OML and OMW to the growth media.
        4,000원
        91.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work reports the syntheses of an inexpensive and efficient asphalt-derived mesoporous carbon (AdMC) as an adsorbent. The adsorbent was activated with potassium hydroxide to increase its surface area and then characterized by SEM–EDS, FT-IR, and BET. The adsorption properties of AdMC were evaluated for the adsorptive removal of eleven Poly Aromatic Hydrocarbons (PAHs) and diesel from water samples. The prepared AdMC showed very high surface areas and high micropore volumes equal to 2316 m2/g and 1.2 cm3/g, respectively. Various experimental conditions influencing the adsorption capacity of eleven PAHs and diesel were investigated. At high concentrations, PAHs and diesel solubility in water is very low. Hence, samples were emulsified with a surfactant, and then maximum adsorption capacity was investigated. Adsorption profile of individual PAHs was examined using gas chromatography/mass spectrometry analysis followed by liquid–liquid extraction. Total hydrocarbon removal was studied using a total organic analyzer. Asphalt-derived mesoporous sorbent showed an extreme ability to remove PAHs and diesel (average adsorption capacity of 166 mg/g for individual PAHs and diesel (maximum capacity of 1600 mg/g). The experimental results fitted the Langmuir model with a correlation efficiency of 0.9853. The results obtained for both adsorbents also matched to pseudo-second-order kinetics, suggesting that the adsorption of PAHs and diesel is chemical, monolayer, and homogeneous process.
        4,500원
        92.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The energy demands of the world have been accelerating drastically because of the technological development, population growth and changing in living conditions for a couple of decades. A number of different techniques, such as batteries and capacitors, were developed in the past to meet the demands, but the gap, especially in energy storage, has been increasing substantially. Among the other energy storage devices, supercapacitors have been advancing rapidly to fill the gap between conventional capacitors and rechargeable batteries. In this study, natural resources such as pistachio and acorn shells were used to produce the activated carbons for electrode applications in a supercapacitor (or an electrical double-layer capacitor— EDLC). The activated carbon was synthesized at two different temperatures of 700 °C and 900 °C to study its effect on porosity and performance in the supercapacitor. The morphology of the activated carbon was studied using scanning electron microscopy (SEM). A solution of tetraethylammonium tetrafluoroborate ( TEABF4)/propylene carbonate (PC) was prepared to utilize in supercapacitor manufacturing. The performance of the EDLC was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Activated carbons from both the pistachio and acorn shells synthesized at 700 °C in argon gas for two hours exhibited better surface textures and porosity. There activated carbons also exhibited more capacitor-like behavior and lower real impedances, indicating that they would have superior performance compared to the activated carbons obtained at 900 °C. This study may be used to integrate some of natural resources into high-tech energy storage applications for sustainable developments.
        4,300원
        97.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The congenital head anomalies are most often used to describe defects in the eyes, mouth, nose, skull, and or brain. The faulty embryogenesis most likely found to be associated with abnormal genetic or epigenetic causes during pregnancy. Eventually it leads to congenital anomalies. Rabbit-headed Lamb (RH) is a disorder in sheep breeding that is characterized by some deformities in the head and the face. A dead –day old- crossbred white Najdi lamb with a deformed face and head was reported to be born in the current case. The external and physical examination revealed a deformed skull and facial region with a unilateral eye, fused mouth, piglike nose, and patent skull with the brain coming out from left eye orbit. Additionally, the lamb was very skinny with unusual long extremities. This is the first report of this syndrome that describes such deformities in a stillbirth Najdi breed lamb.
        3,000원
        98.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Objectives: This systematic review examined the association of animal-assisted interventions (AAI) with quality of life (QoL) for pediatric oncology patients, for potential use in occupational therapy practice. Methods: Articles published in peer-reviewed journals between 2002-2019 from PubMed, MEDLINE, CINAHL, American Journal of Occupational Therapy (AJOT), Journal of Oncology, SCOPUS, and OTSeeker were selected for AAI with therapy dogs specific to the target population of pediatric oncology patients undergoing treatment in clinical settings. Results: Moderate evidence was found for AAI and mood improvement, pain reduction, and stress relief; and low-level evidence supported AAI for decreasing anxiety. The most significant AAI improvements were seen in perceptions of pain, stress levels, and mood. Discussion: Evidence suggests that occupational therapists may want to consider incorporating AAI into therapy sessions as it serves as a distraction and short-term coping strategy for children undergoing oncological treatment.
        5,100원
        1 2 3 4 5