검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        1.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Full spectrum fitting is a powerful tool for estimating the stellar populations of galaxies, but the fitting results are often significantly influenced by internal dust attenuation. For understanding howthe choice of the internal dust correction method affects the detailed stellar populations estimated from the full spectrum fitting, we analyze the Sydney-Australian Astronomical Observatory Multiobject Integral field spectrograph (SAMI) galaxy survey data using the Penalized PiXel-Fitting (PPXF) package. Three choices are compared: (Choice-1) using the PPXF reddening option, (Choice-2) using the multiplicative Legendre polynomial, and (Choice-3) using none of them (no dust correction). In any case, the total mean stellar populations show reasonable mass-age and mass-metallicity relations (MTR and MZR), although the correlations appear to be strongest for Choice-1 (MTR) and Choice-2 (MZR). Whenwe compare the age-divided mean stellar populations, theMZRof young (<109.5 yr ≈ 3.2 Gyr) stellar components in Choice-2 is consistent with the gas-phase MZR, whereas those in the other two choices hardly are. On the other hand, the MTR of old (≥109.5 yr) stellar components in Choice-1 seems to be more reasonable than that in Choice-2, because the old stellar components in low-mass galaxies tend to be relatively younger than those in massive galaxies. Based on the results, we provide empirical guidelines for choosing the optimal options for dust correction.
        4,000원
        10.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present analyses of 1250 variable sources identi ed in a 20 square degree eld toward NGC 2784 by the KMTNet Supernova Program. We categorize the variable sources into three groups based on their B-band variability. The rst group consists of 31 high variability sources with their B- band RMS variability greater than 0.3 magnitudes. The second group of medium variability contains 265 sources with RMS variability between 0.05 and 0.3 magnitudes. The remaining 951 sources belong to the third group of low variability with an RMS variability smaller than 0.05 magnitudes. Of the entire 1250 sources, 4 clearly show periods of variability greater than 100 days, while the rest have periods shorter than 51 days or no reliable periods. The majority of the sources show either rather irregular variability or short periods faster than 2 days. Most of the sources with reliable period determination between 2 and 51 days belong to the low-variability group, although a few belong to the medium-variability group. All the variable sources with periods longer than 35 days appear to be very red with B􀀀V > 1.5 and V 􀀀I > 2.1 magnitudes. We classify candidates of 51 Cepheids, 17 semi-regular variables, 3 Mira types, 2 RV(B) Tauri stars, 26 eclipsing binary systems and 1 active galactic nucleus. The majority of long-term variables in our sample belong to either Mira or semi-regular types, indicating that long-term variability may be more prominent in post-main sequence phases of late-type stars. The depth of the eclipsing dips of the 26 candidates for eclipsing binaries is equivalent to 0.61 as the average relative size of the two stars in the binary system. Our results illustrate the power of the KMTNet Supernova Program for future studies of variable objects.
        4,800원
        1 2