We present the results of far-infrared spectral mapping of the Galactic center region with FIS-FTS, which covered the two massive star-forming clusters, Arches and Quintuplet. We find that two dust components with temperatures of about 20 K and 50 K are required to fit the overall continuum spectra. The warm dust emission is spatially correlated with the [OIII] 88 μm emission and both are likely to be associated with the two clusters, while the cool dust emission is more widely distributed without any clear spatial correlation with the clusters. We find differences in the properties of the ISM around the two clusters, suggesting that the star-forming activity of the Arches cluster is at an earlier stage than that of the Quintuplet cluster.
Several practical applications of melt-textured bulk superconductors require the complex-shaped products such as curved, ring-shaped, and drilled blocks rather than simple shaped pellets. However, melt-textured bulk superconductors are often damaged when they are cut, grinded, or drilled. With the aim of reducing such damages, we have investigated the preparation of the complex-shaped bulk superconductors by previously machining binder-added precursors and pre-sintered precursors. We could produce various complex-shaped bulk superconductors without cracking from these machined precursors