검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 989

        1.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Copper, silver, and gold-reduced graphene oxide nanocomposite (Cu-rGO, Ag-rGO, and Au-rGO) were fabricated via the hydrothermal method, which shows unique physiochemical properties. Environment friendly electromagnetic radiation was employed to synthesize rGO from GO. The nonlinear optical phenomenon of noble metal decorated rGO is predominantly due to excited state absorption, which arises from surface plasmon resonance and increases in defects at the surface due to Cu, Ag, and Au incorporation. It is found that the third-order nonlinear absorption coefficient was in the order of 10− 10 m/W, with notable enhancements in the third-order properties of Au-rGO compared to other nanocomposites and their respective counterparts. Functionalizing rGO induces defect states ( sp3), increasing NLO response. Cu, Ag, and Au exhibit higher Surface-Enhanced Raman Scattering (SERS) activity due to rGO-induced structural modifications. SERS signals are influenced by dominant signals from Au nanorods. The electronic structures for pure and doped rGO were investigated through Density Functional Theory (DFT). The computed partial density of states (PDOS) confirms the enhancement of the state in Au-doped rGO is due to the charge transference from Au to C 2p orbital. The optical absorption spectra and PDOS reveal the possibility of free carrier absorption enhancement in Au which validates experimentally observed higher two-photon absorption (β) value of Au-doped rGO. The tuning of nonlinear optical and SERS behaviour with variation in the noble metal upon rGO provides an easy way to attain tuneable properties which are exceedingly required in both optoelectronics and photonics applications.
        4,800원
        4.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have intended and preparation of hierarchically absorbent materials were covered with a NiMn2O4 and acts as a catalyst for azo dye degradation. The polyaromatic-based (PA) absorbent compounds were initially constructed by bromomethylated aromatic hydrocarbons which undergo self-polymerization in presence of ZnBr as a reagent and cross linker is bromomethyl methyl ether. The absorbent black materials with a 3D network were prepared by direct carbonization and activation of the as-prepared PA. The hydrothermal method was adapted for the preparation of carbon hybrid material C@NiMn2O4 powder's catalytic activity is effective in reducing p-nitrophenol to p-aminophenol and decolorizing carbon-based dyes like methyl orange (MO), methyl yellow (MY), and Congo red (CR) in aqueous media at 25 °C when NaBH4 is added. UV–visible spectroscopy was used to analyze the dyes' breakdown at regular interval.
        4,000원
        5.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal-free N–S- and N–P-doped nanocarbon (SCNP and PCNP) electrocatalysts prepared through sustainable microwaveassisted synthesis using hemigraphis alternata plant leaves. The prepared heteroatom-doped nanocarbon materials are active catalysts for the two-electron oxygen reduction reaction (ORR) to produce 65–70% of hydrogen peroxide. As evidenced from the XPS, most proportion of the doped heteroatoms contain the oxygen functional groups in the nanocarbons. These attributes are the critical factors to see the selective two-electron transfer ORR for the PCNP and SCNP. This approach shed light on the critical role of dual heteroatoms doping and the oxygen functionalities in nanocarbon towards the selectivity of ORR. We believe that this method would allow the preparation of heteroatom that contains oxygen functionalities. Our work paves a sustainable way of preparation of nanocarbon based ORR catalysts that are only selective for two-electron transfer process.
        4,000원
        6.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The most significant threat to the ecosystem is emerging pollutants, which are becoming worse each year and harming the planet severely and permanently. Many organic and inorganic contaminants are present and persistent due to various world events and population growth. As a result, there is a greater need for new technology and its application to address the problems caused by developing pollutants. Carbon composite nanomaterials have significant potential in the fight against numerous environmental contaminants due to their distinctive attributes. This review discusses the reports of customized carbon composite nanomaterials to meet the need for specific elimination of emerging contaminants. Physical and chemical features such as high surface area, conductivity (thermal and electrical), and vibroelectronic properties, size, shape, porosity, and composite nature are making these tailored materials of carbon-based nanomaterials an emerging and sustainable tool to remove persistent compounds like emerging contaminants in aqueous solution. Different composite materials are well discussed in this review, along with their adsorption efficiency of diverse emerging contaminants, including Bisphenol A, estradiol, metformin, etc. This review provides insight into the recent trends limited to 2017–2023. The limitations of carbon-based nanomaterials, such as regeneration and cost-effectiveness, have also been overcome in recent years by diverse modifications in the production process, which can be further improved to make these materials well suited for an extended group of emerging contaminants.
        6,100원
        7.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fundamental aspects of creating passivation layers for corrosion resistance in nuclear engineering applications, specifically the ability to form complete layers versus porous ones, are being explored in this study. Utilizing a laser ablation technique, 1,064 nm fire at 10 Hz with 60 pulses per shot and 0.5 mm between impact points, aluminum samples are treated in an attempt to create a fully formed passivation layer that will be tested in a LiCl-KCl eutectic salt. By placing these samples into an electrochemical environment mimicking a pyroprocessing system, corrosion rates, resistances and material characteristics are tested for one week and then compared between treated and untreated samples. In initial testing, linear sweep voltammetry indicates corrosion current density for the untreated sample at −0.038 mA·cm−2 and treated samples at −0.024 mA·cm−2 and −0.016 mA·cm−2, respectively. This correlates to a control sample corrosion rate of −0.205 mm·yr−1 and treated rates of −0.130 mm·yr−1 and −0.086 mm·yr−1 for samples 1 and 2. In addition, electrochemical impedance spectroscopy circuits show application of a longer-lasting porous passivation layer on the treated metal, compared to the naturally forming layer. However, the current technique fails to create a uniform protection layer across the sample.
        4,600원
        8.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene quantum dots (GQDs) are zero-dimensional carbonous materials with exceptional physical and chemical properties such as a tuneable band gap, good conductivity, quantum confinement, and edge effect. The introduction of GQDs in various layers of solar cells (SCs) such as hole transport layer (HTL), electron transport materials (ETM), cathode interlayer (CIL), photoanode materials (PAM), counter electrode (CE), and transparent conducting electrode (TCE) could improve the solar energy (SE) harvesting, separation and transportation of electrons and hole, thus ultimately enhance the overall performance and stability of SCs. The incorporation of GQDs in various layers such as HTL, ETM, CIL, PAM, CE, and TCE achieved photo conversion efficiencies (PCEs) of 18.63, 21.1, 12.81, 9.41, 8.1, and 3.66%, respectively. Furthermore, GQDs improved stabilities such as resistance to degradation for HTL (up to 77%), ETM (80%), resistance to UV light for ETM (94%), resistance to temperature in ETM (90%), and bending stabilities after 1000 cycles for HTL (88%) and for TCE (90%). There are reviews focused on the utilization of different carbon-structured materials such as graphene, carbon nanotubes (CNT), fullerenes, and carbon dots in SCs applications. More specifically, the utilization of GQDs for SCs is limited and yet to be explored in greater detail. This review mainly focuses on the recent advancement of various techniques of production of GQDs synthesis, utilization of GQDs in various layers like HTL, ETM, CIL, PAM, CE, and TCE for the enhancement of PCE, and the stability of SCs. As a result, we believe that an exclusive study on GQDs-sensitized solar cells (GQDSSCs) could provide an in-depth analysis of the recent progress, achievements, and challenges.
        7,700원
        9.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The nanostructured dysprosium oxide ( Dy2O3) was synthesized by the co-precipitation method and incorporated with graphitic carbon nitride (g-C3N4) using the ultrasonication method. The resultant product is denoted as Dy2O3/ g-C3N4 nanocomposite which was further used for electrochemical sensing of riboflavin (RF). The physicochemical properties of Dy2O3/ g-C3N4 nanocomposite were examined using several characterization techniques. The obtained results exhibit the nanocomposite formation with the preferred elemental compositions, functional groups, crystalline phase and desired surface morphology. The electrocatalytic performance of Dy2O3/ g-C3N4 nanocomposite was scrutinized with a glassy carbon electrode (GCE) via differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques with the conventional three-electrode system. The modified electrode distributes more active surface area suggesting high electrocatalytic activity for the RF detection with two linear ranges (0.001–40 μM and 40–150 μM), a low detection limit of 48 nM and sound sensitivity (2.5261 μA μM−1 cm− 2). Further, the designed sensor possesses high selectivity, excellent stability, repeatability and reproducibility. Finally, the fabricated sensor was successfully estimated for the detection of RF in actual food sample analysis using honey and milk with better recovery.
        5,200원
        10.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The dyeing process is a very important unit operation in the leather and textile industries; it produces significant amounts of waste effluent containing dyes and poses a substantial threat to the environment. Therefore, degradation of the industrial dye-waste liquid is necessary before its release into the environment. The current is focusing on the reduction of pollutant loads in industrial wastewater through remediating azo and thiazine dyes (synthetic solutions of textile dye consortium). The current research work is focused on the degradation of dye consortium through photo-electro-Fenton (PEF) processes via using dimensionally stable anode (Ti) and graphite cathode. The ideal conditions, which included a pH of 3, 0.1 (g/L) of textile dye consortium, 0.03 (g/L) of iron, 0.2 (g/L) of H2O2, and a 0.3 mAcm-2 of current density, were achieved to the removal of dye consortium over 40 min. The highest dye removal rate was discovered to be 96%. The transition of azo linkages into N2 or NH3 was confirmed by Fourier transforms infra-red spectroscopic analysis. PEF process reduced the 92% of chemical oxygen demand (COD) of textile dye consortium solution, and it meets the kinetics study of the pseudo-first-order. The degradation of dye through the PEF process was evaluated by using the cyclic voltammetric method. The toxicity tests showed that with the treated dye solution, seedlings grew well.
        4,800원
        11.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The mechanism of resonant light scattering in single-layer graphene is discussed. A new concept of electron–hole selfphotorecombination is proposed, which makes it possible to clearly separate the phenomena of resonant light scattering and resonant photoluminescence. It is established that Rayleigh resonant radiation has been found to consist of virtual and non-virtual components. It has been shown that Rayleigh radiation is mainly caused by resonant non-virtual optical transitions. The band of Rayleigh radiation due to resonant virtual transitions is quite wide, and the intensity is extremely low. On the basis of the presented theory, the results of numerical estimates of the linewidth and intensity of the Rayleigh band of single-layer graphene are in fairly good agreement with the experimental data.
        4,000원
        12.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene oxide (GO) and ultrafine slag (UFS) have been applied to reinforce cement mortar cubes (CMC) in this research. The consequences of GO and UFS on the mechanical attributes of the CMC were explored through experimental investigations. Established on the results, at the 28 days of hydration, the CMC compressive and flexural strength with 0.03% of GO and 10% UFS were 89.8 N/mm2 and 9.1 N/mm2, respectively. Furthermore, the structural changes of CMC with GO and UFS were qualitatively analysed with instrumental techniques such as scanning electron microscope (SEM), X-ray fluorescence (XRF), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), FT Raman spectroscopy, atomic force microscopy (AFM), and 27Al, 29Si-Nuclear magnetic resonance spectroscopy (NMR). SEM results reported that GO and UFS formed an aggregated nanostructure that improved the microstructural properties of the CMC. TGA analysis revealed the quantum of calcium hydrate and bound water accomplished by supplementing GO bound to the UFS aggregates. FT-IR analysis of the CMC samples confirmed the ‘O-’comprising functional groups of GO which expedited the formation of complexes between calcium carbonate ( CaCO3) and UFS. 0.03% GO was the optimum dosage that enhanced the compressive and flexural attributes when combined with 10% UFS in CMC.
        4,300원
        13.
        2023.10 구독 인증기관·개인회원 무료
        매년 국내로 비래해 오는 해충인 벼멸구는 그 기원이 중국 또는 중국 남부일 것으로 예상해왔으나, 이에 대한 유전학적 근거는 Mun et al. (1999)에 의해 제시된 세 가지 COI haplotype 비교가 유일하다. Mun et al. (1999)은 국내에 서 확인된 두 가지 haplotype 유형이 인도차이나반도 이남의 균일한 한 가지 haplotype 집단 유형과 중국에서 확인 된 또 다른 haplotype 집단 유형임을 근거로 국내 벼멸구의 기원을 중국으로 특정한 바 있다. 본 연구는 국내 및 동남아시아 5개국(부탄, 미얀마, 캄보디아, 라오스 및 태국)으로부터 직간접적으로 확보한 개체들을 대상으로 GBS (genotyping by sequencing) 및 NGS 기법을 통해 PCA를 포함한 다양한 집단유전학적 분석을 수행하였다. 그 결과 인도차이나반도의 벼멸구 집단은 크게 북부와 남부로 나뉘며, 국내 개체들은 북부에 비해 남부(캄보디 아, 태국)에 더 가깝다는 사실을 확인하였다. 따라서 벼멸구의 국내 비래는 중국으로부터의 기원 이전에 장마전 선이 형성될 무렵부터 인도차이나반도 남쪽의 고온다습한 서풍이 남남서풍으로 바뀌면서 중국 내륙을 거쳐 국내로 비래하는 경로를 따르는 것으로 보인다. 하지만 태안의 개체 중에는 인도차이나반도 집단들의 외군으로 확인되는 개체가 있었고, 이는 인도차이나반도 외의 샘플링되지 않은 다른 지역에서도 벼멸구가 국내로 비래할 수 있다는 가능성을 제시하였다. 따라서 국내로 유입되는 벼멸구의 유전적 기원을 확인하기 위해서는 인도차이 나반도 남쪽 지역에서 시작한 동아시아 여름 몬순의 바람이 한국으로 도착하는 경로에 위치한 다른 지역에서의 추가적인 샘플링 및 지속적인 관심과 추적이 필요할 것이다.
        14.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Evaluating the effectiveness of the radiation protection measures deployed at the Centralized Radioactive Waste Management Facility in Ghana is pivotal to guaranteeing the safety of personnel, public and the environment, thus the need for this study. RadiagemTM 2000 was used in measuring the dose rate of the facility whilst the personal radiation exposure of the personnel from 2011 to 2022 was measured from the thermoluminescent dosimeter badges using Harshaw 6600 Plus Automated TLD Reader. The decay store containing scrap metals from dismantled disused sealed radioactive sources (DSRS), and low-level wastes measured the highest dose rate of 1.06 ± 0.92 μSv·h−1. The range of the mean annual average personnel dose equivalent is 0.41–2.07 mSv. The annual effective doses are below the ICRP limit of 20 mSv. From the multivariate principal component analysis biplot, all the personal dose equivalent formed a cluster, and the cluster is mostly influenced by the radiological data from the outer wall surface of the facility where no DSRS are stored. The personal dose equivalents are not primarily due to the radiation exposures of staff during operations with DSRS at the facility but can be attributed to environmental radiation, thus the current radiation protection measures at the Facility can be deemed as effective.
        4,200원
        15.
        2023.07 구독 인증기관·개인회원 무료
        The Net Promotor Score (NPS) is one of the most well-known metrics for measuring customer loyalty. Originally designed by Reichheld (2003), the measure asks participants to rate their likelihood to recommend the brand on a scale of 0-10, after which respondents are placed into a ‘detractors’ group, ‘passive’ group or ‘promotors’ group. While the measure has attracted much attention due to its simplicity and ease of use, there has equally been much criticism of its reliability, nomological validity and how it is connected to business outcomes. Therefore, the current study aims to understand whether the NPS can be used to identify brand advocacy, and secondly, does the NPS work in a care-based, low switching service context. The study included three unique contexts: at home care, residential care and disability care. In total, there were 611 participants, all of which were based in Australia. A questionnaire was developed and administered to each group and included both quantitative and qualitative questions to understand the consumer experience. The findings supported NPS as an effective metric in a care-based, low-switching context for identifying positive customer advocacy. The implication is that the NPS can be used to track organizational performance; and the extended NPS allows organizations to understand and encourage (address) positive (negative) advocacy. In addition, suggestions for an ‘earned advocacy score’ were provided which may offer a more effective way of understanding consumer experience, while providing clearer, more detailed and more actionable data. The current study provides much needed insight for brand and care organizations to understand how the NPS might be used effectively to facilitate better brand outcomes.
        18.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Echeveria is a genus belonging to the Crassulaceae family that comprises approximately 170 species. It is a representative plant known as a succulent with economic potential in the floriculture industry. Echeveria plants are widely distributed in dry environments and endemic to Mexico. These plants have a rosette formation and varied leaf colors and shapes, which are characteristics of interest for landscaping, cut flowers, or interior decoration. Given their range of locations in different climates or indoor conditions, it is important to have an understanding and knowledge of their leaf morphology and anatomy and how they function to provide optimum care and management. Owing to high demand in horticultural markets, many breeders have crossed their desired species. However, this method has progressively increased the number of species without proper records of parents or other natural unintended crossings, creating phylogenetic problems and identification issues. The use and understanding of phenotypes, anatomical data, and/or research to aid in taxonomic issues and improve cultural management practices have been reviewed and discussed in this paper. In this review, we have provided a brief background of Echeveria species, focusing on the challenges and studies that have attempted to address these issues.
        4,000원
        19.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetically separable and reusable zinc ferrite/reduced graphene oxide ( ZnFe2O4/rGO) nanocomposite has been prepared by hydrothermal method. The results illustrate that the construction of ZnFe2O4 and rGO occur concurrently in a hydrothermal reaction that initiates the formation of rGO-wrapped ZnFe2O4 nanospheres. The morphological and structural features of the ZnFe2O4/ rGO nanocomposites reveal that the rGO nanosheets anchored to the ZnFe2O4 sphere act as a self-protective clamping layer to avoid the photo corrosion effect under photo irradiations. The nanocomposites express the soft magnetic behavior with high saturation magnetization under annealing temperature at 300 °C, which may attribute to the well-defined crystalline structure and surface defects. In addition, the GZF 300 nanocomposites exhibit the enhanced photocatalytic degradation over Rhodamine B dye which is 3.4, 1.15, and 1.32 times higher than that of ZF, GZF, and GZF 600 over under visible irradiation in 120 min. The GZF 300 nanocomposites demonstrate their ability to degrade RhB efficiently, even after several photocatalysis cycles with high catalyst recovery by its magnetically separable behavior. The high densities of oxygen defects improvise electron transfer from ZnFe2O4 to rGO and delay the recombination process of the nanocomposite, resulting in enhanced visible photocatalytic activity. The strong magnetic properties of rGO wrapped ZnFe2O4 nanocomposite catalysts the easy separation from the suspension system for multiple usages in water treatment.
        4,300원
        20.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        예이츠는 ‘우리는 마지막 낭만주의자다’라고 선언하면서 자신의 낭만적 세계관과 시적 패턴에 대해 명백히 한다. 그는 사랑, 좌절, 민족주의에 대한 세속적 감각과 열정을 드러내기 위해 자신의 초현실적이고 개인적인 본성과 주관성을 시에 가감없이 드러낸다. 워즈워스의 전통이 자연에서 범신론과 자연의 경이로움과 정신, 초자연적 요소 및 아찔한 아름다움을 찾아내는 것에 반해, 예이츠의 낭만주의는 의식적인 아니마 문디의 존재, 문화적 통합과 존재의 통일성에서 위안을 구한다. 아일랜드와 신화적 상상력을 찬양함으로써, 예이츠는 최대한으로 “사유를 두들겨 무엇인가를 만들어”내고, 현대시뿐만 아니라 아일랜드 문학 전통과 역사에 대한 독특한 문학 및 시적 전통을 생성한다. 예이츠는 사실주의와 비교와 역사에서 파생된 상상력, 환상과 신비주의의 유형, 갈등하는 자아와 민족주의와 종교를 엮어서 동반 상승효과를 만들어낸다.
        4,000원
        1 2 3 4 5