검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 590

        1.
        2023.11 구독 인증기관·개인회원 무료
        Carbon 14 (14C) is radioactive isotope of carbon which emits beta ray with long half-life (5730±30 years). Since the 14C is significantly hazardous for human being, the appropriate process to treat 14C is necessary. From the nuclear power plant, the ion exchange resin, graphite, and activated carbon are the main source of 14C. During the effort to reduce the volume of those wastes, the 14C is inevitably occurred as carbon dioxide (CO2) form, so called 14CO2. Thus, the development of technology to permanently capture and safely dispose 14CO2 is required. In this presentation, we introduce the decommissioning technology ranging from 14CO2 capture to solidification. First, the new class of glass adsorbent is developed which can irreversibly capture CO2 even under mild conditions. This material promotes the dissolution of alkaline earth ions due to the unstable glass structure. Then, the physical and chemical optimization of glass adsorbent enhances the performance of CO2 capture. Further, room temperature geopolymeric solidification is also performed to safely dispose 14C without any potential release.
        2.
        2023.07 구독 인증기관·개인회원 무료
        Consumer brand engagement has recently drawn attention for researches because of its importance in predicting brand loyalty. Meanwhile, social media is used as digital marketing tools for marketers to attract and engage younger consumers. This study aims to answer the question whether social marketing efforts by fashion brands on major social media platforms have influence on consumer brand engagement in the context of Vietnamese fashion brands. Social marketing efforts include five dimensions of entertainment, interaction, trendiness, customization and word-of-mouth. Although social marketing efforts has been examined in relationship with other important marketing concepts such as brand equity and customer equity (Godey et al., 2016; Kim and Ko, 2012), few studies have investigated its effect on consumer brand engagement, especially in fashion brands. Besides, Vietnam as an emerging market is witnessing considerable changes that social media brings to every field including fashion markets. It is noticeable that more and more fashion brands in Vietnam are trying to expand and advance their marketing strategies on social media to engage consumers. In this study, a self-administered online survey was delivered to Vietnamese consumers, which included 281 valid responses who followed Vietnamese fashion brands on Facebook or Instagram. The empirical results show that social media efforts engage consumers differently on brand engagement dimensions. The key finding indicates that entertainment and word-of-mouth are positively related to brand engagement in affective, cognitive and behavioral dimensions. Interaction is positively related to affective and behavioral brand engagements. Trendiness is positively related to behavioral brand engagement. Finally, customization is positively related to cognitive brand engagement.
        3.
        2023.05 구독 인증기관·개인회원 무료
        LiCl-KCl eutectic possesses unique properties such as a low melting point, high thermal conductivity, and good electrical conductivity. These properties make it suitable for various applications, including nuclear power generation, pyroprocessing in nuclear waste management, and thermal energy storage systems. In most experiments using LiCl-KCl, the molten salt composition is an important factor; therefore, periodic analysis through sampling is necessary for monitoring compositional changes. Although manual sampling is typically used, it is time-consuming and can introduce errors due to low reproducibility. To address this issue, we have developed an automatic molten salt sampling device using the cold-finger method. This method involves immersing the tip of a tungsten rod in hightemperature LiCl-KCl, removing it after a few seconds, and allowing the adhered molten salt to solidify instantly. A collector then scratches and drops the solidified sample. These processes are carried out automatically using servo motors, enabling the sampling device to move around the molten salt system. We have optimized the sampling conditions, such as insertion and withdrawal rate, immersion time, and the interval between continuous sampling, based on the molten salt temperature. The temperature was set between 500°C and 850°C, considering the operating temperatures of the applications. In addition to sampling speed, the sampling depth is a key condition for determining the sampling mass. Therefore, we examined the amount of sample depending on the sampling depth and, particularly, considered the change in salt height when sampling is performed continuously. As a result, we determined the number of sampling iterations required to reach the target sample mass. Furthermore, to minimize the initial salt loss, we noted that sampling from the salt surface resulted in less representative samples. To determine the reliability, we compared the results of surface sampling with those obtained when sampling at the middle of the salt. This study will enable highly reproducible and reliable sampling by providing a prototype for an automatic sampling device for molten salt along with guidelines.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Aluminum’s exceptional properties, such as its high strength-to-weight ratio, excellent thermal conductivity, corrosion resistance, and low neutron absorption cross-section, make it an ideal material for diverse nuclear industry applications, including aluminum plating for the building envelope of nuclear power plants. However, plating aluminum presents challenges due to its high reactivity with oxygen and moisture, thus, complicating the process in the absence of controlled environments. Plating under an inert atmosphere is often used as an alternative. However, maintaining an inert atmosphere can be expensive and presents an economic challenge. To address these challenges, an innovative approach is introduced by using deep eutectic solvents (DES) as a substitute for traditional aqueous electrolytes due to the high solubility of metal salts, and wide electrochemical window. In addition, DESs offer the benefits of low toxicity, low flammability, and environmentally friendly, which makes DESs candidates for industrial-scale applications. In this study, we employed an AlCl3-Urea DES as the electrolyte and investigated its potential for producing aluminum coatings on copper substrates under controlled conditions, for example, current density, deposition duration, and temperature. A decane protective layer, non-polar molecular, has been used to shield the AlCl3-Urea electrolyte from the air during the electrodeposition process. The electrodeposition was successful after being left in the air for two weeks. This study presents a promising and innovative approach to optimizing aluminum electrodeposition using deep eutectic solvents, with potential applications in various areas of the nuclear industry, including fuel cladding, waste encapsulation, and radiation shielding.
        5.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive carbon dioxide (14CO2) capture using innovative materials is desirable due to associated radiological hazards, and growing climate change. Mineral carbonation technology (MCT) is amenable to irreversibly capture CO2. Typically, MCT is attractive because capturing carbon through the chemical reaction between alkaline earth metal ions and CO2 forms insoluble and significantly stable carbonates. However, most applications of MCT have an intrinsic restriction regarding their operational conditions since no forward reaction occurs within realistic time scales. Thereby, the CO2 capture performance, such as CO2 capacity and carbonation reaction rate, of MCTs and their applications are severely restricted by the difficulty of operations under mild conditions. For example, natural minerals require aggressive carbonation reaction conditions e.g. high pressure (≥ 20 bar), high temperature (> 373 K), and pH-adjusted carrier solutions. To overcome such obstacles, the fabrication of alkaline earth oxides impregnated into an amorphous glass structure have been recently developed. They show enhanced rates of dissolution of alkaline earth metal ions and carbonation reaction due to the loosely packed glass structure and the generation of a surface coating silica gel, consequently facilitating CO2 capture under mild conditions. In this presentation, we report the synthesis and application of a crystallized glass tailored by controlled heat treatment for CO2 capture under mild conditions. The controlled heat treatment of an alkaline earth oxide-containing glass gives rise to a structural transformation from amorphous to crystalline. The structural characterizations and CO2 capture performance, including CO2 capacity, carbonation reaction rate, and the dissolution rate of alkaline earth metal ion, were analyzed to reveal the impact of controlled heat treatment and phase transformation.
        6.
        2023.05 구독 인증기관·개인회원 무료
        Metakaolin-based geopolymers have shown promise as suitable candidates for 14C immobilization and final disposal. It has been shown that the physicochemical properties of metakaolin wasteforms meet, and often far exceeding, the strict compression strength and leaching acceptance criteria of the South Korea radioactive waste disposal site. However, it is not possible to analyze and characterize the internal structure of the geopolymer wasteform by conventional characterization techniques such as microscopy without destruction of the wasteform; an impractical solution for inspecting wasteforms destined for final disposal. Internal inspection is important for ensuring wastes are homogenously mixed throughout the wasteform and that the wasteform itself does not pose any significant defects that may have formed either during formulation and curing or as a result of testing prior to final disposal. X-ray Computed Tomography (XCT) enables Non-Destructive Evaluation (NDE) of objects, such as final wasteforms, allowing for both their internal and external, characterization without destruction. However, for accurate quantification of an objects dimensions the spatial resolution (length and volume measures) must be know to a high degree of precision and accuracy. This often requires extensive knowledge of the equipment being used, its precise set-up, maintenance and calibration, as well as expert operation to yield the best results. A spatial resolution target consists of manufactured defects of uniformed dimensions and geometries which can be measured to a high degree of accuracy. Implementing the use of a spatial resolution target, the dimensions of which are known and certified independently, would allow for rapid dimensional calibration of XCT systems for the purpose of object metrology. However, for a spatial resolution target to be practical it should be made of the same material as the intended specimen, or at least exhibit comparable X-ray attenuation. In this study, attempts have been made to manufacture spatial resolution targets using geopolymer, silica glass, and alumina rods, as well as 3D printed materials with varying degrees of success. The metakaolin was activated by an alkaline activator KOH to from a geopolymer paste that was moulded into a cylinder (Diameter approx. 25 mm). The solidified geopolymer cylinder as well as both the silica glass rod and alumina rod (Diameter approx. 25 mm) we cut to approximately 4 mm ± 0.5 mm height with additional end caps cut measuring 17.5 mm ± 2.5 mm height. All parts were then polished to a high finish and visually inspected for their suitability as spatial resolution targets.
        7.
        2023.05 구독 인증기관·개인회원 무료
        Chemical environments of near-field (Engineered barrier and surrounded host rock) can influence performance of a deep geological repository. The chemical environments of near-field change as time evolves eventually reaching a steady state. During the construction of a deep geological repository, O2 will be introduced to the deep geological repository. The O2 can cause corrosion of Cu canisters, and it is important predicting remaining O2 concentration in the near-field. The remaining O2 concentration in the near field can be governed by the following two reactions: oxidation of Cu(I) from oxidation of Cu and oxidation of pyrite in bentonite and backfill materials. These oxidation reactions (Cu(I) and pyrite oxidation) can influence the performance of the deep geological repository in two ways; the first way is consuming oxidizing agents (O2) and the second way is the changing pH in the near-field and ultimately influencing on the mass transport rate of radionuclides from spent nuclear fuel (failure of canisters) to out of the engineered barrier. Hence, it is very important to know the evolution of chemical environments of near-field by the oxidation of pyrite and Cu. However, the oxidation kinetics of pyrite and Cu are different in the order of 1E7 which means the overall kinetics cannot be fully considered in the deep geological repository. Therefore, it is important to develop a simplified Cu and pyrite oxidation kinetics model based on deep geological repository conditions. Herein, eight oxidation reactions for the chemical species Cu(I) were considered to extract a simplified kinetic equation. Also, a simplified kinetics equation was used for pyrite oxidation. For future analysis, simplified chemical reactions should be combined with a Multiphysics Cu corrosion model to predict the overall lifetime of Cu canisters.
        8.
        2023.05 구독 인증기관·개인회원 무료
        Рrecipitation of platinum group metals (Rh, Ru, Pd, so-called MPG) from the melt essentially affects the reliability of installations for vitrification of high-level liquid radioactive waste (HLW). To date, it is difficult to find an approach which allows simultaneous recovery of all three metals. The aim of our work was to select a sorbent that would provide simultaneous up to complete recovery of given metals. The following inorganic materials were tested as sorbents – yellow blood salt (YBS).and hexacyanoferrates of iron, aluminum, copper and nickel. The degree of metal recovery was studied is influenced by the temperature and concentration of nitric acid. Only palladium was completely recovered using YBS. At the same time, specially prepared iron hexacyanoferrate (HCF-Fe) under optimal experimental conditions recovers almost all Pd and more than 95% and 90% of Rh and Ru, respectively. The behavior of fission products, including the main dose-forming components of HLW (Cs, Sr) and Mo, U, Ag, REE) in the course of MPG recovery was studied. The experiments were carried using both multicomponent model solutions and real raffinates. Options for further management of the recovered metals have been worked out. Thus, the proposed method of metal recovery seems promising for the development of a technology for the removal of MPG from nitric HLW during the reprocessing of the spent nuclear fuel (SNF) before vitrification. The recovered metals can be probably used in various technological processes. Also, this method can provide the MPG recovery from low-concentration tail solutions.
        10.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon is a part of all living creatures and it is the chief constructing block for life on this planet carbon occurs in several appearances, mainly as plant biomass, organic matter in soil, as gas CO2 in the air and dissipated in seawater. Soil carbon exhausts when production of carbon increases than carbon contribution. Soil comprises nearly 75% of total carbon existing on land, more than the quantity stockpiled in living animals and plants. So, soil plays a major part in maintaining a stable carbon cycle. Over the previous 150-year-period, the quantity of carbon present in the air has amplified by 30%. Majority of scientists thought that there is a straight relationship amongst amplified levels of CO2 in the air and increasing global warming. One anticipated technique to diminish atmospheric CO2 is to escalate the global packing of carbon in soils. Therefore, there is a necessity to manage soils because soil comprises more inorganic carbon as compared to the atmosphere and more organic carbon as compared to the biosphere. Soil is also thought to be a lively and important constituent in global carbon discharge and potential of sequestration. Carbon sequestration, known commonly as C-storage, can be acquired by different controlling practices, and the size of various management techniques, to enhance C-storage of soil and offer a key basin for atmospheric CO2, can be assessed most persuasively from studies conducted over long time that underwrite exclusive data on soil C accumulation, losses and storage. Sequestration happens when input of carbon enhances as compared to output of carbon. Soil carbon sequestration is the method of relocating CO2 from the air in to the soil with crop leftover and additional organic solids and in a configuration that is not instantly emitted back to the atmosphere. This review focused on beneficial role of carbon sequestrating fertilizers (press mud, boiler ash and compost) in carbon sequestration and soil properties.
        4,600원
        11.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive waste generated in large quantities from NPP decommissioning has various physicochemical and radiological characteristics, and therefore treatment technologies suitable for those characteristics should be developed. Radioactively contaminated concrete waste is one of major decommissioning wastes. The disposal cost of radioactive concrete waste is considerable portion for the total budget of NPP decommissioning. In this study, we developed an integrated technology with thermomechanical and chemical methods for volume reduction of concrete waste and stabilization of secondary waste. The unit devices for the treatment process were also studied at bench-scale tests. The volume of radioactive concrete waste was effectively reduced by separating clean aggregate from the concrete. The separated aggregate satisfied the clearance criteria in the test using radionuclides. The treatment of secondary waste from the chemical separation step was optimally designed, and the stabilization method was found for the waste form to meet the final disposal criteria in the repository site. The final volume reduction rates of 56.4~75.4% were possible according to the application scenario of our processes under simulated conditions. The commercial-scale system designs for the thermomechanical and chemical processes were completed. Also, it was found that the disposal cost for the contaminated concrete waste at domestic NPP could be reduced by more than 20 billion won per each unit. Therefore, it is expected that the application of this technology will improve the utilization of the radioactive waste disposal space and significantly reduce the waste disposal cost.
        12.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The team has studied the relationship between the ability of the coals to be dissolved in crude anthracene oil and their composition. The coal samples taken from different deposits in Russia and Mongolia were characterized by different stages of metamorphism and tested by the Fourier transform infrared spectroscopy and Carbon-13 nuclear magnetic resonance. The data of a correlation analysis enabled us to find out that an amount of aromatic structures in coal macromolecules provided the main influence on the thermal dissolution of the coals. The middle-rank coals had the highest rates of coal organic matter transfer to liquid products. The data showed that the dissolution process was accompanied by destruction of weak bonds among aliphatic groups. The amount of methylene groups in the aliphatic part of coal macromolecules had a direct impact on conversion of the coal organic matter into soluble products.
        4,000원
        13.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main objective of the research was to deposit thin films of silver on a graphite carbon paste in a phosphate buffer medium using an electrochemical method. To construct a nitrofurazone detection sensor that is highly sensitive. Different manufacturing parameters, such as electrodeposition potential, pH effect, potential scan rate effect, and number of scan cycles, were examined in this section. The parameters were optimized to improve the deposited silver layers various electrocatalytic characteristics. The Nitrofurazone reduction process is diffusion controlled, as seen by the linear variation of Epc with log(v). The constructed Ag-NPs@CPE electrod has excellent electrical characteristics a large active surface area and low background with extremely high electrical conductivity, according to structural and electrochemical characterizations such as Scanning electron microscopy, X-ray diffraction (XRD) and cyclic voltammetry. The constructed sensor has a very remarkable analytical performance for nitrofurazone molecule identification, with a very low detection limit of about 10– 8 M. The detection of nitrofurazone using our Ag-NPs@CPE sensors in real samples contaminated with the antibiotic nitrofurazone, such as tap water and urine. In the selected sample, the electroanalytical findings reveal a very satisfactory recovery rate of more than 94 percent.
        4,600원
        14.
        2022.05 구독 인증기관·개인회원 무료
        Concrete is one of the largest wastes, by volume, generated during the decommissioning of nuclear facilities, which significantly influences the projected costs for the disposal of decommissioning wastes. Concrete consists of aggregates and a cement binder. In radioactive concrete, the radioisotopes are mainly associated with the cement component. If the radioactive isotope can be separated from the concrete to below the clearance criteria, the volume of radioactive concrete waste could be reduced effectively. We were studied to separate the radioactive materials from the concrete by using the thermomechanical and chemical treatment processes, sequentially. From the study, separated aggregate could be treated to achieve the clearance level. However, these processes generate a large volume of secondary acidic radioactive wastewater, which might be a critical problem to reduce the volume of radioactive concrete waste. In this research, separating the 137Cs and 90Sr from dissolved concrete wastewater to below the discharge criteria by precipitation method, it would be released to the environment under industrial waste guidelines. The experiments were conducted to using a simulated radioactive wastewater, formed by the dissolution of concrete within HCl, which was spiking the 137Cs and 90Sr, respectively. In addition, we applied the chemical precipitation methods with wastewater, using ferrocyanide for 137Cs and BaSO4 coprecipitation for 90Sr. As a result, targeted radionuclides could be removed to the discharge level (137Cs: 0.05 Bq·ml−1, 90Sr: 0.02 Bq·ml−1) by precipitation method. Therefore, it could reduce the secondary wastewater effectively by precipitation method and enhance the additional volume reduction for radioactive concrete waste.
        15.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The bituminous coal was extracted with different industrial solvents like coal tar (CT), heavy cycle oil (HCO) and with their blends to determine the influence of solvent type on the extract yield, composition, thermal behavior, properties such as solubility to toluene and quinoline. The extracts obtained at 380 °C represented pitch-like solid matter with the softening points of 72–127 °C depending on the solvent used. They were characterized using the elemental and group analysis, FTIR spectroscopy, TG-DTG thermogravimetry and liquid chromatography for benzo(a)pyrene concentration. Also, maltene fractions of some extracts were studied by GC–MS. The results showed coal dissolution and the properties of the extracts to differ greatly depending on the solvent used. Coal tar was more favorable solvent for coal dissolution than HCO. Good correlation between the extract aromaticity and the content of the toluene insolubles was observed. The maltene fractions of the extracts obtained with CT and CT blended with HCO consisted mainly of polycyclic aromatics, and that obtained with the HCO contained also large amount of aliphatic compounds. It was found that the amount of the carcinogenic benzo(a) pyrene (BaP) in the toluene soluble fractions of the extracts were different depending on the solvents used for extraction. The remarkable result was that the BaP concentrations in all extracts were much lower than in the solvents used.
        4,000원
        16.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The mechanosynthesis route is a physical top–down strategy to produce different nanomaterials. Here, we report the formation of graphene nanoribbons (GNRs) through this route using carbon bars recovered from discarded alkaline batteries as raw material. The mechanosynthesis time (milling time) is shown to have an influence on different features of the GNRs such as their width and edges features. TEM revealed the presence of GNRs with widths of 15.26, 8.8, and 23.55 nm for the milling times of 6, 12, and 18 h, respectively. Additionally, the carbon bars evolved from poorly shaped GNRs for the shortest milling time (6 h) to well-shaped GNRs of oriented sheets forming for the longest milling time. Besides GNRs, graphene sheets (GNS) of different sizes were also observed. The Raman analysis of the 2D bands identified the GNS signal and confirmed the GNRs nature. ID/IG values of 0.21, 0.32, and 0.40 revealed the degree of disorder for each sample. The in-plane sp2 crystallite sizes ( La) of graphite decreased to 91, 60, and 48 nm with increasing peeling time. The RBLM band at 288 cm− 1 confirmed the formation of the GNRs. Mechanosynthesis is a complex process and the formation of the GNRs is discussed in terms of a mechanical exfoliation, formation of graphene sheets and its fragmentation to reach GNR-like shapes. It is shown that the synthesis of GNRs through the mechanosynthesis route, besides the use of recycled materials, is an alternative for obtaining self-sustaining materials.
        5,400원
        17.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The nuclear legacy that remains in the United Kingdom (UK) is complex and diverse. Consisting of legacy ponds and silos, redundant reprocessing plants, research facilities, and non-standard or one-off reactor designs, the clean-up of this legacy is under the stewardship of the Nuclear Decommissioning Authority (NDA). Through a mix of prompt and delayed decommissioning strategies, the NDA has made great strides in dealing with the UK’s nuclear legacy. Fuel debris and sludge removal from the legacy ponds and silos situated at Sellafield, as part of a prompt decommissioning strategy for the site, has enabled intolerable risks to be brought under control. Reactor defueling and waste retrievals across the Magnox fleet is enabling their transition to a period of care and maintenance; accelerated through the adopted ‘Lead and Learn’ approach. Bespoke decommissioning methods implemented by the NDA have also enabled the relevant site licence companies to tackle non-standard reactor designs and one-off wastes. Such approaches have potential to influence and shape nuclear decommissioning decision making activities globally, including in Korea.
        8,100원
        1 2 3 4 5