In an influential paper, Choi and Kim (2010) derived waiting times in an queuing model under net neurality and under prioritization. In this short paper, we argue that the waiting times of content transmission that Choi and Kim (2010) derived by using the gueuing model under the non-preemptive priority rule are miscalculated. We provide corrected waiting times in the queuing model in the prioritization case. We also show that this correction does not affect their main results on the delay time and the incentive to invest in the network capacity qualitatively.
Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in crystalline polysaccharides including chitin and cellulose. The recent discovery of LPMO family proteins in many insect species suggests that they presumably play a role in chitin degradation in the cuticle/exoskeleton, tracheae and peritrophic matrix during insect development. Insect LPMOs belong to auxiliary activity family 15 (AA15/LPMO15) and have been classified into at least four groups based on phylogenetic analysis. In this study, we identified and investigated the physiological functions of group I LPMO15 (MaLPMO15-1 and PhLPMO15-1) in two longhorn beetle species, Monochamus alternatus and Psacothea hilaris. In both species, depletion of LPMO15-1 transcripts by RNAi resulted in a lethal pupal-adult molting defect. The insects were unable to shed their old pupal cuticle and died entrapped in their exuviae. Furthermore, TEM analysis revealed a failure of degradation of the chitinous procuticle layer of their old cuticle, retaining intact horizontal laminae and vertical pore canals containing perpendicularly oriented chitin fibers (pore canal fiber, PCF) in their core. These results indicate that MaLPMO15-1 and PhLPMO15-1 are required for turnover of the chitinous old cuticle, which is critical for insect molting.
Insect cuticle is an extracellular matrix formed primarily from two different biopolymers, chitin and protein. During each molt cycle, a new cuticle is deposited simultaneously with degradation of the old cuticle by molting fluid cuticle degrading-enzymes, including epidermal chitinases (CHTs). Insect CHTs, belonging to family 18 glycosylhydrolase (GH18), have been classified into at least eleven subgroups based on phylogenetic analyses, and group I (CHT5) and group II (CHT10) epidermal CHTs present in molting fluid. In this study we report the physiological function of MaCHT5 and MaCHT10 in the Japanese pine sawyer, Monochamus alternatus. RNAi for either MaCHT5 or MaCHT10 resulted in larval-pupal and pupal-adult molting defects, in which the insects were unable to shed completely their old cuticle and died entrapped in their exuviae. Furthermore, TEM analysis revealed a failure of degradation of the old cuticle in both MaCHT5- and MaCHT10-deficient pharate adults. In the old pupal cuticle, the chitinous horizontal laminar and vertical pore canal essentially remained intact in the endocuticular layer. These results indicate that both CHTs are required for turnover of the chitinous old cuticle, which is critical for completion of insect molting. We also discuss the possible function of two spliced variants of MaCHT10, MaCHT10a and MaCHT10b.
Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in crystalline polysaccharides including chitin and cellulose. The recent discovery of LPMO family proteins in many insect species suggests that they presumably play a role in chitin degradation in the cuticle/exoskeleton, tracheae and peritrophic matrix during insect development. Insect LPMOs belong to auxiliary activity family 15 (AA15/LPMO15) and have been classified into at least four groups based on phylogenetic analysis. In this study, we identified, characterized and investigated the physiological functions of group I LPMO15 (MaLPMO15-1 and PhLPMO15-1) in two longhorn beetle species, Monochamus alternatus and Psacothea hilaris. In both species, depletion of LPMO15-1 transcripts in last instar larvae by RNAi had no effect on subsequent larval-pupal molting and the resulting pupae developed normally. However, adverse effects on their development were observed during the pupal-adult molting period. The pharate adults were unable to shed their old pupal cuticle and died entrapped in their exuviae probably due to a failure of degradation of the chitin in their old cuticle, which is critical for completion of the insect molting and continuous growth.
The Nuclear Cycle Experiment Research Center is one of the facility of the Korea Atomic Energy Research Institute (KAERI). This facility is a laboratory-scale version of pyro-processing technology. Mixture depleted Uranium (DU) and depleted Uranium (DU) feed material are used in this facility for pyro-research. During summer, air conditioners that maintain temperature and humidity are always in operation to protect analysis equipments. 15 air conditioners are installed in this facility. The condensate which is generated in 15 air conditioners is collected in one place to analyze. Sampling was performed to check the level of contamination, U, pH and gamma radiation test were performed. This paper shows the degree of contamination of air conditioner condensate which is generated in the radiation management area.
The relationship between companies in the supply chain is a core competency of the company and key indicator which determines the survival of a company. Therefore, companies are investing in efforts for inter-company relations, and related studies have been conducted for a long time. However, in the supply chain, the positions and characteristics of suppliers and buyers are not the same. Therefore, research is needed to better understand and respond to other characteristics of the relationship between suppliers and buyers. The purpose of this study was to identify the characteristics of the resources held between the buyer and the supplier through social capital, which is a value asset that can be used as a resource created through social relations, and whether it affects the commitment of the relationship. In addition, The core of this study was to statistically analyze the differences between suppliers and buyers through this analysis. This study was conducted by surveying companies that are suppliers and buyers along the supply chain. The difference between the supplier and the buyer was revealed through empirical analysis, and statistically, the difference between the two groups was also revealed. As a result of the analysis, the higher the involvement of the buyer, the more significant the result of structural capital was, and the result was statistically opposite to the supplier. As for the relationship capital, quantitative and qualitative relationship capital had different effects on the commitment. Both the supplier and the buyer had a positive effect on relationship performance. However, the effect of emotional commitment on non-financial relationship performance has a greater degree of influence on suppliers, and it appears in statistical differences. This study revealed differences in the relationship between suppliers and buyers, and found that different investments and efforts were required for each group.