South Korea has over 0.38 million of managed honey bee (Apis cerana) colonies before 2009 years ago, which produce the highest quantity of honey in the Korea; however, almost colony (90%) were collapsed by Korean Sacbrood Virus (KSBV) in South Korea. Korean Sacbrood Virus (KSBV) is the pathogen of A. cerana Sacbrood disease, which poses a serious threat to honeybee A. cerana, and tends to cause bee colony and even the whole apiary collapse. Colony collapse of A. cerana was first reported on the Pyeong-Chang of the South Korea in 2009. Several scientists and governments has been tried research for cure the sacbrood disease in A. cerana colony by medicines and management techniques. Unfortunately, The sacbrood disease dosen`t improve. So, we were developed a better breed of A. cerana for resistance of sacbrood virus by selection and then artificial insemination. A. cerana breeding technique was first successful applied with A. cerana in Korean. Queens was grafted from sacbrood resistance line and then it was growing in sacbrood disease colony that was survived 100%. Altogether selected 18 queens were artificially inseminated and 2,000 drones of A. cerana in Korea was used to evaluate amount of semen collection. We are select two scabrood resistance A. cerana line (R and H). R line be used for rearing the Queen. Drone was reared in H line colony. The RH hybrid were not infected sacbrood virus even spread sacbrood virus (2×106). RH colonies have very excellent hygienic behavior, brood, and sacbrood disease resistance activity.
Most known species in the Strophariaceae are decomposers and grow on various kind of organic matter. Approximately 18 genera and 1,316 species in the Strophariaceae have been reported worldwide. Through an ongoing survey of indigenous fungi in Korea, 29 specimens belonging to the Strophariaceae were collected from 2012 to 2016. These specimens were identified based on morphological characteristics and molecular analysis of internal transcribed spacer sequences. Fifteen taxa were confirmed, with eight species matching those previously recorded. Seven species in five genera were shown to be new records in Korea: Galerina marginata, Gymnopilus crociphyllus, Gymnopilus picreus, Hebeloma birrus, Hebeloma cavipes, Pholiota multicingulata, and Psilocybe thaizapoteca. In this study, we provide detailed morphological descriptions of these species and investigate their evolutionary relationships by constructing phylogenetic trees.
To control pest of Brassicaceae leafy vegetable(leaf broccoli, Red Mustard Leaf, Tatsoi) which grows at vinyl house in IKSAN, Jeollabuk-do, the non-treatment was set as negative control, and treatment was divided into Parasitic natural treatment group and general treatment group. And incidence density of pest was surveyed and control effect was analyzed. As a result, in case of spring plants, the leaf damage ratio was decreased by 31% in Leaf broccoli, 30% in Red mustard leaf and 27% in Tatsoi compared to untreatment. In case of autumn plants, it was decreased by 32%, 41% and 17% respectively. The key pests were Plutella xylostella, Pieris rapae, Myus persicae Sulzer, Thrips palmi and Striped cabbage flea-beetle. Compared with the untreatment, the incidence density of each was significantly controlled. Other pests include Spodoptera exigua, Macdunnoughia purissima, Macdunnoughia purissima which showed high incidental density sometimes. In case of spring plants, the number by treatment was increased by 117% in Leaf broccoli, 85% in Red mustard leaf and 1,000% in Tatsoi. In autumn plants, it was increased by 132%, 257% and 1,077% respectively. The used Parasitic natural and eco-friendly materials were Cotesia glomerata, lacewing, ladyburg, Orius laevigatus, Encarsia formosa, Entomopathogenic nematode, Chungjigi and Togkaki. During early development of each pest, the Parasitic naturals were grazed 2~3 times at the interval of 7~10days. During the peak time, eco-friendly materials were sprayed 1~2 times. Based on this, comprehensive management model was drafted by period for each Brassicaceae vegetables pest.
To control Thrips tabaci in Korean leek and green onion which grow at vinyl house in IKSAN, Jeollabuk-do, the non-treatment was set as negative control. In general treatment group, 120 mesh gauze was installed on the side window after planting(May, 2nd) and, in spring, Orius strigicollis (1.0/m2) was grazed 3 times every 7 days from mid of May which is early development stage and In the mid of June, which is the peak stage, plant extracts were sprayed one time. In autumn, O. strigicollis was grazed 3 times every 7 days from mid of September which is early development stage, and in the mid of October, which is the peak stage, plant extracts were sprayed one time. The result shows that the leaf damage ratio was decreased by 22% in Korean leek and by 27% in green onion compared to the untreatment. And the control value of Thrips tabaci shows 78.7% in korean leak and 90.6% in green onion. The density control effect of Thrips tabaci was significantly controlled under max 6.2/plant in general treatment group compared max 25/plant in the untreatment and this result was similar in green onion. The yields by general treatment was increased by 85% in Korean leek and 56% in green onion, compared with non-treatment yields, which was 900kg/10a in Korean leek and 1,287kg/10a in green onion.
Although much effort has been made to find agronomically important loci in the soybean plant, extensive linkage disequilibrium and genome duplication have limited efficient genome-wide linkage analyses that can identify important regulatory genes. In this respect, recombination block-based analysis of cultivated plant genomes is a potential critical step for molecular breeding and target locus screening. We propose a new three-step method of detecting recombination blocks and comparative genomics of bred cultivars. It utilizes typical reshuffling features of their genomes, which have been generated by the recombination processes of breeding ancestral genomes. To begin with, mutations were detected by comparing genomes to a reference genome. Next, sequence blocks were examined for likenesses and difference with respect to the reference genome. The boundaries between the blocks were taken as recombination sites. All recombination sites found in the cultivar set were used to split the genomes, and the resulting sequence fragments were named as core recombination blocks (CRBs). Finally, the genomes were compared at the CRB level, instead of at the sequence level. In the genomes of the five Korean soybean cultivars used, the CRB-based comparative genomics method produced long and distinct CRBs that are as large as 22.9 Mb. We also demonstrated efficiency in detecting functionally useful target loci by using indel markers, each of which represents a CRB. We further showed that the CRB method is generally applicable to both monocot and dicot crops, by analyzing publicly available genomes of 31 soybeans and 23 rice accessions.