농산물 재배, 수확 후 세척 등에 사용되는 농업용수는 미생물에 오염될 경우 병원균을 농산물로 전파하여 식중 독을 유발할 수 있기 때문에 관리가 필요하다. 이 연구는 2021년부터 2023년까지 하천수, 저수지, 지하수 등 다양 한 수원의 농업용수에서 대장균군과 대장균의 오염 수준 을 조사하고 자외선(ultraviolet, UV) 소독이 농업용수 내 미생물을 저감시키는 데 얼마나 효과적인지 평가하였다. 농업용수의 미생물 수질조사 결과 대장균 오염도는 수원 에 따라 차이가 있는 것으로 나타났다. 하천수의 대장균 농도는 평균 0.95±1.23 log CFU/100 mL였으며, 저수지는 평균 0.76±1.07 log CFU/100 mL, 지하수는 평균 0.1±0.47 log CFU/100 mL, 기타수원은 평균 0.6±0.87 log CFU/100 mL로 조사되었다. 수원별로 보면 하천수, 저수지, 지하수 순으로 높은 미생물 오염을 보였다. 다양한 용수 조건에 서 자외선 소독을 테스트한 결과, 99.9% 미생물 비활성화 에 필요한 UV 선량은 증류수에서 1.2-1.6 mW/cm2·sec, 농 업용수 원수에서 2.0-2.7 mW/cm2·sec 범위 였다. 고형물 응집제를 통해 전처리된 농업용수는 처리되지 않은 농업 용수 원수에 비해 자외선 투과율이 높았으며, 미생물을 99.9% 감소시키는 데 필요한 자외선 선량이 더 낮아지는 것으로 나타났다. 용수 자외선 투과도가 감소함에 따라 소독 효율이 감소함에도 불구하고 본 실험에서 조사된 선량 은 수질에 상관없이 수초 내 99.9%의 미생물 감소를 달 성하는 것으로 나타나, UV 소독기술은 농업용수의 미생 물 위험을 줄이는 데 효과적인 방법으로 판단된다.
Polyphenol profiles, physicochemical properties, antioxidant activities, and inhibitory effect of adipocyte differentiation of Houttuynia cordata fermented with Lactobacillus brevis B84 were evaluated. Six polyphenols were characterized for this plant by using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and the results were compared with total phenolic content by a spectrophotometric method. The total amount of the identified polyphenols was lower than that determined by the spectrophotometric method. However, the fermentation process influenced polyphenol composition such as content of vanillic acid and caffeic acid. The phytochemical profiles were evaluated by high-performance liquid chromatography with UV and electrospray ionization mass spectrometry detection (HPLC-DAD-ESI-MSn). Total sugar and reducing sugar contents decreased after fermentation. Antioxidant activities such as DPPH, ABTS, and superoxide anion radical scavenging and reducing power were evaluated to compare the beneficial effect after fermentation. Fermented H. cordata increased the lipolytic effect in 3T3-L1 adipocytes. Overall, the results indicate that the fermentation of H. cordata with L. brevis B84 produces changes of phenolic compounds, antioxidant activity, and lipolytic effect.
Livestock wastewater has high potential as one of energy resources because this wastewater is including high organic matter. Therefore the studies attempting to bio-gasification and bio-electricity generation using livestock wastewater is being tried. The pre-treatment system used in this study was the purpose to control the ammonia nitrogen in conjunction with the system and the microbial fuel cell. Because ammonia nitrogen is to inhibit the electricity generation efficiency of microbial fuel cell. These studies were to ascertain the effect of oxidants on the nitrogen removal in the pre-treatment system using catalyst and microbubbles to treat the ammonia nitrogen. The three kinds of oxidant such as air, oxygen (O2), and hydrogen peroxide (H2O2) were used to know the ammonia and nitrate nitrogen removal. This system was operated with four kinds of conditions. First method is O2 gas with 100 mL/min with 1ml of 30% H2O2 was supplied to the wastewater. A second method, the O2, with 400 and 1,000 mL/min was supplied through the flow meter before livestock wastewater was flow in the reactor. The last method, air was supplied 800 mL/min. The nitrate removal had no significant difference all conditions except the air supply. On the other hand, the ammonia and nitrate nitrogen removal when oxygen was supplied with 1000 mL O2/min was higher than that of the other conditions. The removal rate when air was supplied 800 mL/min was similar to the value in the supplied with 400 ml O2/min. This result showed that oxidant was important factor to improve the ammonia nitrogen removal rate.