The honey bee soluble acetylcholinesterase 1 (AmAChE1) is overexpressed under the overwintering and brood rearing-suppressed conditions. To investigate the role of AmAChE1 in regulating acetylcholine (ACh) titer, ACh concentrations both in the head (neuronal) and abdomen (non-neuronal) were analyzed. ACh titer was significantly lower in both tissues of worker bees under the overwintering and brood rearing-suppressed conditions compared to control bees. The expression levels of another two factors that regulate ACh titer, choline acetyltransferase (AmAChT) and acetylcholinesterase 2 (AmAChE2), were not altered as judged by qPCR and native PAGE, suggesting that the lower ACh titer was mainly regulated by AmAChE1. For precise verification of AmAChE1 as an ACh titer regulator, honey bees were put under brood rearing-suppressed condition to induce AmAChE1 and injected AmAChE1 dsRNA to knock down the gene. The ACh titer of AmAChE1-knocked down honey bees was 1.9 and 2.6 folds higher than that of control bees in head and abdomen, respectively. Taken together, in spite of its extremely low catalytic activity, the overexpression of AmAChE1 is likely to be related with the low level of ACh homeostasis, perhaps via ACh sequestration, under brood rearingsuppressed condition, and likely induce metabolic changes through ACh receptors-related pathways.
RNA interference (RNAi)-based strategy has been developed to control various phytophagous chewing pests. However, only a few cases of RNAi-based control success have been reported for sucking pests, suggesting that sucking pests likely ingest less amount of transgenic subcellular hairpin RNA (or dsRNA). In this study, as the basic information for the establishment of ingestion RNAi against sucking pests, feeding amount and time course of plant subcellular fractions of the four sucking pest species (Frankliniella occidentalis, Frankliniella intonsa, Tetranychus urticae and Nilaparvata lugans) were determined by quantitative PCR (qPCR). Adults of the four species were starved for 24 h and then fed with kidney bean leaf (F. occidentalis, F. intonsa, T. urticae) or rice leaf (N. lugens) for 48 h. The leaf-fed adults were collected every 6-h interval and their genomic DNA was extracted. The ingested fractions of chloroplast and nuclear were quantified using rubisco and 50s rRNA as marker genes, respectively. The ingested amount of rubisco and 50s rRNA genes in F. occidentalis, F. intonsa and T. urticae showed rapid increasing pattern after feeding and then slightly reduced over time. In contrast, N. lugens neither ingest nuclear nor showed any distinct feeding pattern of chloroplast. These results demonstrate that F. occidentalis, F. intonsa and T. urticae ingest both chloroplasts and nucleus along with cytosol as cell-feeders but N. lugens, a phloem sap feeder, does not ingest nucleus during sucking. Our findings further suggest that ingestion RNAi-based control strategy would work better for cell-feeding sucking pests compared to phloem sap-feeding sucking pests.
Small hive beetle (Aethina tumida) (SHB) is an invasive species to most northern hemisphere countries, including Korea. In an attempt to obtain basic information for efficient management of SHB, genes encoding conventional insecticide targets [voltage-sensitive sodium channel α-subunit (VSSC) and acetylcholinesterase (AChE)] were annotated and characterized following the analysis of whole transcriptomes of adults and larvae. A single VSSC gene was identified but no apparent mutations associated with pyrethroid resistance were detected. Genes encoding two AChEs (AtAChE1 and AtAChE2) were identified from the SHB transcriptome. AtAChE1 was determined to be the main catalytic enzyme, thereby being a toxicologically more relevant target. No apparent mutations associated with resistance to organophosphorus and carbamate insecticides was identified in the AtAChE1 gene, whereas the S238G mutation, originally identified from the Colorado potato beetle, was detected in the AtAChE2 gene.
The honey bee soluble acetylcholinesterase 1 (AmAChE1) is overexpressed under the overwintering and brood rearing-suppressed conditions. To investigate the role of AmAChE1 in regulating acetylcholine (ACh) titer, ACh concentrations in both the head (central nervous system) and abdomen (peripheral nervous system) were analyzed. ACh titer was significantly lower in both tissues of worker bees under the overwintering and brood rearing-suppressed conditions compared to control bees. Interestingly, the expression levels of choline acetyltransferase (AmChAT) and molecular marker genes of immune systems were significantly reduced in honey bee head under the same conditions. Taken together, ACh titer appears to be reduced via a cooperative interaction of the AmAChE1 overexpression and AmChAT underexpression and to be linked to reduced inmmune responses under the overwintering and brood rearing-suppressed conditions. The roles of AmAChE1 (with little catalytic activity) and AmChAT in the ACh homeostasis and signaling was discussed in the contexts of immune response and longevity regulation in honey bees.
Among two different acetylcholinesterase (AmAChE1 and AmAChE2) of the western honey bee, the soluble AmAChE1might be related with a stress response as judged from its over-expression in honey bee workers when brood rearingwas suppressed. In this study, to ensure the nature of AmAChE1 responding to stress factors, the expression patternsof AmAChE1 were investigated following various treatments, including varroa mite infestation, bacterial challenge, broodrearing suppression, thermal stresses, chemical treatments, ultraviolet B irradiation, starvation, water restriction and crowdingstress. In addition, transcription profiles of four heat shock protein genes known as general stress markers and vitellogeningene, which is induced in several stress conditions, were tested as positive references. In every tested condition, onlybrood rearing suppression and heat shock were related with the expression of AmAChE1.
There are two different types of acetylcholinesterase (AChE1 and AChE2) in the western honeybee as in most of insects. It is suggested that soluble AmAChE1 might be related with a stress response as judged from its elevated expression level in honey bee workers when brood rearing was suppressed. In this study, to ensure the nature of AmAChE1 responding to stress factors, the expression patterns of AmAChE1 following heat shock, brood rearing suppression and chemical treatments (Imidacloprid and fluvalinate) were investigated. Also, several heat shock protein (hsp) genes (hsp10, hsp60, hsp70 and hsp90) known as general stress markers were tested as positive references. Heat shock induced expression of every tested hsp along with AmAChE1. In brood rearing-suppressed worker bees, 7 days old bees showed much higher expression level of AmAChE1 and hsp90 compared to control honey bees. However, treatment of imidacloprid and fluvalinate did not induce any apparent overexpression of these genes. These results confirm that both HSP and AmAChE1 genes generally respond to temperature and brood rearing suppression and further suggest that AmAChE1 can serve as a potential biomarker along with hsps for the detection of stress in honey bee colonies.
Two different types of acetylcholinesterae (AChE1 and AChE2) are present in majority of insects, including the Western honey bee. Out of the two honey bee AChEs (AmAChEs), the soluble AmAChE1 with little catalytic activity is widely distributed in both neuronal and non-neuronal tissues, including fat body. In this study, to identify stresss factors that can induce AmAChE expression, we tested various conditions that honey bees can encounter in natural setting, including heat shock, cold shock, bacterial challenge (Escherichia coli and Staphylococcus aureus) and Varroa mite infestations, and evaluated their effects on AmAChE expression. Among the stress factors tested, only heat shock condition induced AmAChE expression in a dose dependet manner. This finding suggests that one function of AmAChE1 is related with thermoregulations, especially against heat shock stress in honey bees.
Composite resins are developed as restorative materials to improve esthetics and mechanical properties. To improve the physical properties of resin material, resin filler have to be added. However, no imaging method is adopted for resin filler distribution. Optical coherence tomography (OCT) is a optical imaging technique to delineate microscopic structures within biological tissue. The OCT application to dental composites resin and its filler is not described yet. So, this new and advanced optical method is needed for clinical application for evaluation of dental composite resin. To analyze the spatial distribution of dental composite resin and to evaluate the resin restoration in cavity, frequency domain optical coherence tomography (FD-OCT) was used for their analysis. Resin restored tooth was prepared. For morphological observation, serially sectioned teeth, conventional X-ray taking and micro computed-tomography (CT) images were compared with OCT images. The experiment has done to evaluate the success of the resin restoration using 3 dimensional structure OCT image. In this research, OCT is evaluated as a new technique to image resin restoration. The evaluation of resin restored tooth was performed by OCT. Inappropriate restoration such as marginal adaptation, large porosities, internal integrity and poor contour could be detected. Resin filler also could be checked by OCT. The distribution, number, regularity and size of resin filler can be differentiated from several commercial products. Considering the characteristics of the OCT, it can be used to evaluate the defects of resin restoration, resin filler distribution, and internal integrity between resin material and tooth structure. The OCT can be considered to be a new and advanced method for the evaluation of resin restorations.
Acetylcholinesterase 1 (AmAChE1) has low catalytic activity and is abundantly expressed in both neuronal and non-neuronal tissues. In previous experiments, we observed that AmAChE1 is rarely expressed in summer while highly expressed in winter. Through additional experiments, the expression of AmAChE1 was suggested to be associated with brood rearing status. Under the assumption that abnormal suppression of brood rearing activity may result in stressful condition in honey bee social community, it was further suggested that AmAChE1 is likely involved in stress management particularly during winter. We hypothesized that the increased docility usually observed in overwintering bees is likely an outcome of stress management in colony, which is mediated by AmAChE1 expression. To verify this, worker bees expressing abundant AmAChE1 were collected in early winter and injected with Amace1 dsRNA to knockdown Amace1. Then, the behavioral activity of the bees was investigated using the EthoVison video tracking system. Honey bees injected with Amace1 dsRNA showed significantly increased motility, which was strongly correlated with the suppressed expression level of AmAChE1 in the abdomen. No apparent reduced expression of AmAChE1 in the head was observed perhaps due to the limited efficacy of RNA interference in the blood-brain-barrier. Our finding suggests that behavioral activity can be regulated, at least, by AmAChE1 expression level in non-neuronal tissue (i.e., fatbody) perhaps via metabolic alteration.
흡연 유무의 남성을 대상으로 뇌 회백질의 손상 유무를 파악 할 수 있는 확산텐서영상을 검사하여 영상을 획득 한 후 Tract-Based Spatial Statics(TBSS)방법으로 뇌 회백질 부위의 기저핵 신경섬유로의 비등방도 FA(fractional anisotropy)값을 측정 분석한 결과 모든 영역에서 흡연자가 비흡연자보다 비등방성 측정값이 낮게 관찰되었으며 FA값은 통계적으로 유의하였다. 본 연구의 측정한 FA결과 값으로 추측하자면 즉, 흡연이 뇌 회백질 기저핵의 모든 해부학적 미세 구조성 변화에 크게 영향을 미치며 신경 섬유로를 손상시키고 이와 관련된 기능적 이상에 영향을 준다고 할 수 있다.