Considering the various health problems associated with obesity in dogs, including renal diseases, joint disorders, and skin diseases, effective management strategies and guidelines are urgently needed. This situation has led to a growing demand for veterinary medications aimed at addressing obesity in dogs. However, the field faces a significant hurdle due to the absence of standardized guidelines for assessing the effectiveness of these anti-obesity medications in dogs. In response to this gap, the Animal and Plant Quarantine Agency (APQA) in Korea has made a crucial step by introducing clinical trial guidelines to evaluate the efficacy of treatments for canine obesity, specifically aimed at approving veterinary medicinal products. The guidelines outlined the selection criteria for target dogs, highlighting the importance of consistency within the control and treated groups. Treatment efficacy is subsequently evaluated by physical examination, body fat reduction, and biochemical indicators. In addition, the guidelines cover dosage and administration, monitoring after dosing, and statistical analysis. By doing so, this guideline not only highlights the significance of the APQA’s initiative in improving the care of obese dogs but also provides practical insights to enhance the standardization and effectiveness of clinical trials in veterinary medicine.
Natural killer (NK) cells have cytotoxic effects on tumor cells and viral pathogens. NK cell-derived exosomes (NK-exosomes) also express typical NK cell markers and cytotoxic molecules, therefore, exert anti-tumor and immune homeostatic activities. In this study, canine NK-exosomes separated from cytotoxic NK cell supernatant carried specific markers such as CD81, Alix, and Perforin 1. We examined the anti-tumor effects of NK-exosomes in an experimental murine model using the canine mammary carcinoma cells, REM134. REM134 cells were xenografted of mammary fat pad of mice. CD133, Bmi-1, MMP-3, IL-6, TNF-α, and PCNA are useful as a molecular marker for tumorigenesis and metastasis. The treatment of canine NK-exosomes inhibited tumor growth and significantly (p<0.01) downregulated the expression of Bmi-1, MMP-3, IL-6, TNF-α, and PCNA in REM134-treated mice. Also, the expression of CD133, potent cancer stem cell marker, was significantly downregulated in the canine NK-exosomes-treated mice compared with that of the tumor group. Collectively, these results suggested that canine NK-exosomes has a potential capacity for regulation of cancer progression and metastasis against canine mammary carcinoma.
Mesenchymal stem cells (MSCs) are multipotent cells capable of replicating as undifferentiated cells, and thus hold therapeutic implications in field of regenerative medicine and reproductive biotechnology. In the present study, we compared the stem cell properties of bovine ear skin tissue (ESK)- and nasal mucosa (NM)-derived MSCs. Bovine ESK-MSCs and NM-MSCs were successfully isolated by collagenase digestion and maintained proliferative capacity during the 20 consecutive passages. Both ESK-MSCs and NM-MSCs showed similar morphology and expressed common cell surface markers (CD29, CD44, CD90, and CD105). Also, we compared differentiation potentials of bovine ESK-MSCs and NM-MSCs into osteogenic, adipogenic, and chondrogenic lineages through specific staining and quantitative real-time RT-PCR. As results, bovine ESK-MSCs and NM-MSCs could differentiate into mesodermal cell lineages. However, bovine ESK-MSCs and NM-MSCs exhibited difference in expression of differentiation-related specific markers. Specifically, NM-MSCs exhibited increased expression levels of osteocalcin, peroxisome proliferator-activated receptor gamma, and aggrecan compared to ESK-MSCs. Also, ESK-MSCs exhibited increased expression levels of collagen type I, II, and lipoprotein lipase compared to NM-MSCs. We suggest that the nasal mucosa of bovine could be used as a source of bovine MSCs.
Canine mammary tumors account for ~30% of all tumors in the female dogs and approximately 50% of the tumors are malignant. Exosomes have been the focus of great interest, as they appear to be involved in numerous important cellular processes. In this study, we examined the anti-tumor effects of canine mesenchymal stem cells-derived exosomes (MSC-exosomes) in an experimental murine mammary tumor model using canine mammary carcinoma cells, REM134. The MSC-exosomes were injected tumor site and tail vein of REM134 xenografted mice. We found that tumor size of the MSC-exosomes-treated group decreased compared to those of the only tumor group in REM134-driven tumorigenic mouse model. In addition, the MSC-exosomes-treated tumor group showed meaningfully reduced expression levels of the MMP-3, IL-1β, IL-6, and TNF-α compared to those in the tumor group. Specifically, we confirmed that the expression level of the CD133, potent cancer stem cell (CSC) markers, decreased in the MSC-exosomes-treated tumor group compared to the tumor group. This study suggests that the MSC-exosomes exhibited anti-tumor effects through downregulating CSC-related markers in the canine mammary tumor murine model. Further study is needed in the future, and we are conducting research on the detailed anti-tumor mechanism of the MSC-exosomes.
The culture of the intestinal epithelium into three dimensional (3D) structures typically termed organoid culture. Organoid culture is based on the ability of intestinal stem cells (ISCs), at the base of the crypt, perpetually to divide and produce a fully differentiated, polarized epithelium. Leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5) positive ISCs isolated from the intestine can form organoids in long-term culture. Thus, when cultured under the appropriate 3D conditions, single Lgr5+ ISCs undergo cycles of self-renewal, differentiation and morphogenesis, and self-organize into crypt-villus domains that house cycling ISCs and differentiated intestinal epithelial cells (IECs). In this study, we performed isolation, characterization and consecutive subculture of small intestinal crypts from BALB/c-nude mouse. Briefly, isolated mouse crypts were embedded in matrigel, cast into 40 μL droplets at the bottom of well in a 48-well plate. Following polymerization, the gels were overlaid with ISCs expansion medium containing B27, N2, N-acetylcysteine, epidermal growth factor, noggin, and R-spondin 1. As a result, mouse crypt-derived ISCs had enteroids and spheroid morphologies. We also confirmed by quantitative real-time RT-PCR that expression of ISCs-related specific genes (Lgr5, sox9) and IECs-related specific genes (chromogranin A, defensin-5, mucin-1, mucin-2, and villin) was maintained at eight passages or more. Thus, we observed that expression of specific markers and consecutive self-renewing in the mouse small intestinal crypt-derived organoids.
Natural killer (NK) cells are innate lymphocytes that aid in the protection of the host from infectious diseases and cancer. Regulation of cytotoxicity in NK cells is mediated by inhibitory receptors that bind major histocompatibility complex class I (MHC-I) molecules on target cells. Human myelogenous leukemia K562 cells are readily attacked by NK cells, because K562 cells expressed very low levels of MHC-I molecules for inhibitory NK cell receptors. In this study, we compared the ability of γ-irradiated- or mitomycin C (MMC)-treated K562 feeder cells to support expansion and activation of canine NK cells. We isolated CD5 negative cells from canine peripheral blood mononuclear cells by immunomagnetic separation and co-cultured with γ-irradiated (100 Gy)- or MMC (20 μg/mL)-treated K562 cells in the presence of interleukin (IL)-2, IL-15 and IL-21 for 21 days. As a result, number of CD5 negative cells, co-cultured with γ-irradiated- or MMC-treated K562 cells (56.72 ± 13.77 fold or 32.99 ± 10.83 fold), was increased than those of CD5 negetive cells (2.99 ± 1.42 fold). Also, we found that gene expression markers of activated NK cells such as NKp30, NKp44, NKp46, Ly49, NKG2D, CD244, perforin, and granzyme B and production of interferon gamma were similarly upregulated in NK cells co-cultured with γ-irradiated- or MMC-treated K562 cells, respectively. Next, we observed that cytotoxicity of NK cells co-cultured with γ-irradiated K562 cells was more sensitively reacted to canine mammary carcinoma cells than those of MMC-treated K562 cells. These results revealed that γ-irradiated K562 cells are more efficient feeder cells than MMC-treated K562 cells for enhancing NK cells expansion and activation.