Recently, it is demonstrate that the invertebrates have a immune memory, called Immune priming (IP). It was partially studied that the IP is mainly regulated by epigenetic modification. Here, to understand the IP on antimicrobial peptides (AMPs) production, we investigated larval mortality and time-dependent expression patterns of AMP genes in T. molitor larvae challenged with E. coli (two-times injection with a one-month interval). Interestingly, the results indicate that the higher and faster expression levels of most AMP genes were detected compared to the non-primed T. molitor larvae. Our results may used to improve the understanding of mechanisms of invertebrate immune memory.
Pellino, a highly conserved E3 ubiquitin ligase, is known to mediate ubiquitination of phosphorylated Interleukin-1 receptor-related kinase (IRAK) homologs in Toll signaling pathway. To understand the immunological function of TmPellino, we screened the knockdown efficiency of TmPellino by injecting TmPellino-specific dsRNA into T. molitor larvae. Subsequently, we investigated the larval mortality and the tissue-specific expression patterns of antimicrobial peptide (AMP) genes against microbial challenges. Interestingly, the results indicate that the expression of many AMP genes was upregulated in the Malpighian tubules of TmPellino-silenced T. molitor larvae. This study may provide basic information to understand how Tmpellino regulates AMPs production in T. molitor.
Tumor necrosis factor receptor-associated factor (TRAF) is known to regulate antimicrobial peptides (AMPs) production in mammals. Here, to understand the immunological function of TmTRAF against microbial challenge, the induction patterns of TmTRAF against microbial infection was investigated by qRT-PCR in the whole-body and tissue of young larvae. In addition, the effects of TmTRAF RNAi on larval mortality and expression of 15 AMP genes in response to microbial infection were investigated. Our studies may help to understand the basic role of AMP production.
Tube, an intracellular protein of the Toll-pathway, forms a complex with Pelle and MyD88, and regulates a signal transduction to activate NF-κB in Drosophila. To understand the antimicrobial function of TmTube, the induction patterns of TmTube were investigated at 3, 6, 9, 12, and 24 h-post injection of pathogens into 10th to 12th instar larvae. In addition, we investigated the effects of TmTube RNAi on larval mortality and tissue specific AMP expression in response to microbial challenge. Our results will provide a basic information to elucidate the immunological function of TmTube
In insects, the glutathione S-transferase is initiated in both the detoxification process and the protection of cellular membranes against oxidative damage. In this study, we identified the open reading frame (ORF) sequence of GST-iso1 and 2 from Tenebrio molitor (TmGST-iso1 and 2). To investigate the expression patterrns of TmGST-iso1 and 2 in response to herbicide, 0.06, 0.6, and 6 ㎍/㎕ of butachlor (FarmHannong, Seoul, South Korea) was challenged into T. molitor larvae, resulting that the TmGST-iso1 were highly induced at 3 and 24 h-post injection. Whereas, the highest expression of TmGST-iso2 was detected at 24 h after treatment. This study may contribute to basic information about the detoxifying activities of T. molitor.
Pelle, a serine/threonine kinase, is an intracellular component of the Toll pathway and is involved in antimicrobial peptides (AMPs) production due to pathogenic infection. It is known that the Pelle phosphorylates Cactus and activates the NF-κB signaling pathway in Drosophila, but it is not studied in Tenebrio molitor. In this study we investigated the tissue-specific expression patterns of the Pelle following pathogenic infection at 3, 6, 9, 12, and 24 hours. Additionally, larval mortality and AMP expression against microbial injection were investigated in dsPelle-treated T. molitor larvae. Our results may help to understand the antimicrobial function of TmPelle.
It is well known that the JNK pathway regulates AMP production against pathogenic infection in both vertebrates and invertebrates. Tenebrio molitor hep (Tmhep) is an homolog of MAP kinase kinase in mammals. Here, we investigate the immunological function of Tmhep in responses in microbial infection using RNA interference technology. The results showed that silencing of Tmhep increased the larval mortality against microbial challenge, as well as reduced AMP production compared to the control group (dsEGFP-treated group). Conclusively, Tmhep plays an critical role in antimicrobial defense in T. molitor larvae.
Slow seedling growth rate and nodulation failure of white clover (Trifolium repens L.) has been limited its good establishment to pastures. The experiment was done to determine the effect of removal of cotyledon and unifoliolate on the shoot, root growth,