본 연구는 경상북도(경북; 안동시, 청송군, 영주시, 의성군), 경상남도(경남; 밀양시), 전북도(전북; 장수군), 경기도(경기; 파주시), 강원도(강원; 정선군) 등 한국의 8개 주요 사과 생산지에서 기후변화가 ‘후지' 사과의 수확시기와 과실품질에 미치는 영향을 분석하고자 하였다. 사과 과수원은 경북지역은 위도 36도, 경남과 전북지역은 35도, 경기와 강원지역은 37도에 위치하였다. 그리고 사과의 착색기인 10월 최저 기온은 청송 5℃, 장수 6.4℃, 정선 5.7℃로 전반적으로 낮았으며, 지리적 차이와 관계없이 과실의 수확시기에는 약 10일 정도의 차이가 있었다. 수확시 과실의 경도는 경북과 경남지역 과실은 56.6-64.1 N으로 다소 낮았던 반면, 전북, 경기, 강원지역은 67.8-72.2 N으로 높게 나타났다. 한편, 지역 간 산 함량 및 내생 에틸렌 발생량은 유의한 차이를 보이지 않았으며, 과피의 적색도 또한 청송 25.8, 정선 27.5, 파주 26.2로 비교적 낮은 수준을 보여 재배지 간 뚜렷한 차이는 관찰되지 않았다. 8개 지역의 과실을 수확후 180일간 저온저장하였을 때 안동, 밀양, 파주지역의 과실 경도는 59.4-64.5 N으로 높게 유지되었고, IEC는 87.0-112.5 μL·L-1으로 낮은 경향을 보였다. 그리고 산 함량은 저장기간이 길어지면서 감소하였고, 가용성 고형물 함량은 변화를 보이지 않았다. 따라서 RCP 4.5와 8.5 시나리오에서 기온 상승에 대한 우려에도 불구하고, 현재까지 한국 사과재배 지역에서 ‘후지’ 사과의 과실품질에는 유의미한 차이가 관찰되지 않았다.
In 2008, leaf blight symptoms were observed on several Chinese chive farms in Sangju. The Pathogenicity of the isolate was confirmed by artificial inoculation, where the pathogen exhibited a strong pathogenicity toward healthy plants. Morphological classification identified the isolate as from the Fusarium genus. For further analysis, PCR and phylogenetic classification were performed with ITS region and 28S rRNA gene which are commonly used for fungal identification. However, the results provided a poor resolution. To solve this problem, we analyzed translation elongation factor 1-alpha (TEF-1α) gene. The analyzed results using TEF-1α gene indicated that the isolate was F. proliferatum. Therefore, it is assumed that TEF-1α gene is important when Fusarium sp. was identified using molecular classification method.
In this study, we compared disease incidence rate and phyllosphere microbial community between drought resistance transgenic rice (Agb0103) and non-transgenic Ilmi (NGM) during 2011-2014 to examine an environmental risk assessment of drought resistance transgenic rice (Agb0103). As the results, major diseases such as sheath blight, brown spot, leaf blast and false smut were occurred, however, there were no significant disease incidence rate between Agb0103 and NGM. As the results of counting bacterial and fungal viable cell, the colonies were increased or decreased which affected by environmental conditions, however there were no differences between Agb0103 and NGM. Also unweighted pair-group method with arithmetic averaging (UPGMA) analysis based on polymerase chain reaction with denaturing gel electrophoresis (PCR-DGGE) revealed that DGGE band pattern of bacterial and fungal communities were clustered by each month and there were no differences between Agb0103 and NGM. Furthermore, isolated casual agents causing sheath blight and brown spot were collected from Agb0103 and NGM, and they revealed that each of pathogens were no differences in morphology and pathogenicity. Therefore, our results suggested that Agb0103 showed no differences in disease incidence rate, characteristic of pathogens and phyllosphere community with NGM. In this way, it can be assumed that transgenic rice Agb0103 could not influence phyllosphere microorganism community and environmental conditions.
This experiment was carried out to investigate the appropriate chilling requirements for breaking dormancy by treating the dormant plant of Hanabusaya asiatica with low temperature (4℃) for different time periods. The rates of sprouting and flowering were higher with longer treatment periods at low temperature. In addition, the growth and flowering of the plant were better when it was potted after treatment at a low temperature for 90 days. The abscisic acid levels and polyphenoloxidase activity of the dormant plant increased during the low temperature treatment, reached a climax 90 days and decreased thereafter. The catalase activity was the lowest after the low temperature treatment for 90 days and increased subsequently. The peroxidase activity increased and showed a sharp rise after the low temperature treatment for more than 90 days. Considering the physiological activities of the enzymes, the changes in the abscisic acid levels, and the characteristics of growth and flowering after sprouting of the plant, the appropriate cold periods required for breaking dormancy could be 90 days.