In the event of a radiological emergency at a nuclear facility, the exchange of information on the accident situation is very important in the response process. For this reason, international organizations such as the IAEA and the EU operate systems to exchange information in the event of a radiological emergency. In south korea, the emergency response information exchange system (ERIX) developed by KINS is operated for use by the national radiological emergency response organization. The ERIX enables the exchange of emergency response information between organizations such as the government, nuclear operators, local authorities, KINS and KIRAMS. The KAERI has developed the KAERI emergency response information exchange system (KAERIX) for the exchange of accident information and emergency response information between the emergency response organizations of the KAERI in the event of a radiological emergency. This system is web-based using HTML, runs on internal network and is only available to KAERI staff. Recently, as the need for optimizing and upgrading KAERIX has arisen, improvements have been derived. The main improvement is optimizing KAERIX for Microsoft Edge to minimize errors. At present, it is optimized for Internet Explorer, but optimizing it for Microsoft Edge mode has become essential due to Microsoft discontinuing support for Internet Explorer. Another major improvement involves adding functions in ERIX to KAERIX, such as displaying the deletion/ correction status of input information and providing notifications for important information registration. Ultimately, KAERIX will be upgraded and optimized in 2024, reflecting improvements.
The nuclear licensee must ensure that the nuclear or radiological emergency preparedness and response organization is explicitly defined and staffed with adequate numbers of competent and assessed personnel for their roles. This paper describes the responsibilities of medical and support personnel for the medical action of casualties in the event of a radiological emergency at the KAERI. Currently, there is one medical personnel (nurse) in KAERI, and a total of eight medical support personnel are designated for medical response in the event of a radiological emergency. These medical support personnel are designated as one or two of the on-site response personnel at each nuclear facility, operating as a dedicated team of A, B (4 people each). In the event of a radiological emergency, not all medical support personnel are mobilized, but members of the dedicated medical team, which includes the medical support personnel of the nuclear facility where the accident has occurred, are summoned. Medical and support personnel will first gather in the onsite operational support center (OSC)/technical support center (TSC) to prepare and stand by for the medical response to injured when a radiological emergency is declared. They should take radiation protective measures, such as wearing radiation protective clothing and dosimeters, before entering the onsite of a radiological emergency, because injuries sustained during a radiological emergency may be associated with radioactive contamination. In the event of an injury, direct medical treatment such as checking the patient’s vitals, first aid, and decontamination will be carried out by medical personnel, while support personnel are mainly responsible for contacting the transfer hospital, reporting the patient’s condition, accompanying the ambulance, filling out the emergency medical treatment record, and supporting medical personnel. In order to respond appropriately to the occurrence of injuries, we regularly conduct emergency medical supplies education and medical training for medical support personnel to strengthen their capabilities.
빵의 소비가 증가함에 따라 제빵 성능을 향상시킬 수 있는 기술은 제빵 산업에서 중요한 주제가 되고 있다. 활성글루텐(vital gluten)은 밀가루에 물을 첨가하여 전분을 제거한 후 글루텐만을 건조시킨 단백질이다. 품질이 낮은 밀가루에 활성글루텐을 첨가하면 반죽에 탄성과 신장성을 부여하여 제빵성능을 향상할 수 있다. 현재 제빵 산업에서 활성글루텐이 많이 활용되고 있지만 이들의 화학적, 물리화학적 특성 및 품질 평가에 필요한 품질 파라미터들에 대해 이해가 부족한 실정이다. 본 총설에서는, 활성글루텐의 품질을 예측하기 위한 파라미터의 이해를 돕기 위하여 밀 글루텐 단백질의 종류와 역할, 밀 반죽에서 형성되는 글루텐 네트워크, 밀가루 품질에 영향을 미치는 요인, 활성글루텐의 제조공정, 활성글루텐의 품질에 영향을 미치는 요인, 마지막으로 활성글루텐의 물리적 특성을 효과적으로 평가할 수 있는 글루토피크(Glutopeak)에 대해 설명하고자 한다. 본 총설을 통해 반죽 리올로지 특성과 제빵 성능에 영향을 미치는 활성글루텐의 품질 파라미터를 이해하고, 제빵 산업에서 활용할 수 있도록 도움이 되길 기대한다.
Background : Resveratrol is the stillbenoid material made by the stress factors from the plants like grape, blueberry and Polygonum cuspidatum and it has useful pharmacological activity such as anti-cancer and longevity effect. Although grapevine contains less resveratrol compared to Polygonum cuspidatum, it is expected that a large amount of resveratrol can be obtained using by-products from the processing because grapes are one of the crops grown and processed considerably in south Korea. Methods and Results : As the result of the analysis of resveratrol content in grape extract using high-performance liquid chromatography (HPLC), it was showed that the amount of the resveratrol was 46.8~47.8 mg(about 4.7~4.8%) per 1 g of grape extract. The method used for purifying resveratrol from grape extract was a column chromatography and adsorption resin was used in packing the column. The content of resveratrol in the eluate obtained by column chromatography was analyzed by HPLC. Then the solid content obtained by freeze-drying was analyzed to get the purity and the collect rate of the resveratrol by measuring the weight. The result showed that the purity of the resveratrol in eluate obtained by column chromatography was measured to 15.2~18.1% and collect rate was up to 95%. Conclusion : From the above results, we have isolated resveratrol which is more pure than the conventional from grape extract and assumed that it is helpful to produce functional material at a low cost by using this isolation method.
Proline has been shown to accumulate in plant under various type of stresses. In our previous study, changes in cold hardiness and proline content showed contrasting patterns during a constant deacclimation. This study was performed to investigate the proline accumulation and related gene expression in response to repeated deacclimation and reacclimation in peach cultivar ‘Daewol’. Proline content was analyzed using the ninhydrin method and related gene expressions were examined using quantitative real-time RT-PCR. Proline contents of ‘Daewol’ increased during the repeated deacclimation treatments. Interestingly, during the twice deacclimation, expressions of P5CS (Δ1-pyrroline-5-carboxylatesynthase) constantly decreased, whereas expressions of P5CR (Δ1-pyrroline-5-carboxylatereductase) increased. Expressions of OAT (ornithine-δ-aminotransferase) indicated up- and down- pattern in response to repeated deacclimation and reacclimation. Our results indicated that proline responds positively to higher temperature in the shoots of peach cultivar ‘Daewol’ and expressions of both P5CS and P5CR genes could show contrasting patterns during the deacclimation. Moreover, our results suggest that ornithine pathway could serve as an alternative pathway in proline synthesis process during deacclimation in peach.
Recent climate changes due to global warming are gradually introducing adverse circumstances for winter survival of temperate fruit trees. Particularly, late winter or early spring thaws followed by hard freezes can cause severe injury to deacclimated flower buds. Thus, the selection of later or slower deacclimating cultivars is needed to avoid frost injury in late winter or early spring. This study was performed to investigate relationship between cold hardiness and bud development under an experimental deacclimation condition for 10 Prunus persica cultivars (Aikawanakajima, Daewol, Izumi Hakuto, Janghowon Hwangdo, Kiraranokiwami, Mihong, Misshong, Soomee, Suhong, and Sun Gold). The rate of deacclimation was not correlated with hardiness before the deacclimation treatment. On the other hand, a strong positive correlation was found between cold hardiness and stage of bud opening.