검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        굴은 패류 양식생산량 중 가장 큰 비율(평균 76%)을 차지하는 중요한 양식생물이다. 본 연구에서는 자란만의 굴 양식장에 대 해, 수온, 염분, 해수 유동, DO, SS, Chl.a를 어장적지평가 인자로 활용한 서식지 적합 지수(Habitat Suitability Index, HSI)를 산정하여 최적 서 식지를 탐색하였다. 조사결과 만 입구가 넓고 해수 유속이 빠르게 나타난 대상해역 남동쪽에서 만 내측으로 갈수록 적합한 서식지로 나 타났고, 굴의 생산량과 본 연구의 HSI는 0.710(p<0.05)의 유의한 상관성을 보였다. 만 내의 원활한 해수 교환으로 먹이공급 등 양식생물 성 장에 도움을 주는 해수 유동은 굴 생산량과 높은 상관성(0.709, p<0.05)을 보여 Chl.a보다 서식 적합도에 더 큰 영향을 미치는 것으로 나타 났다. 본 연구 결과는 양식장 재배치 등 효율적인 연안어장 보전, 이용과 관리에 도움이 될 수 있을 것으로 판단된다.
        4,000원
        4.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        The concepts of residence time and flushing time can be used to explain the exchange and transport of water or materials in a coastal sea. The application of these transport time scales are widespread in biological, hydrological, and geochemical studies. The water quality of the system crucially depends on the residence time and flushing time of a particle in the system. In this study, the residence and flushing time in Gamak Bay were calculated using the numerical model, EFDC, which includes a particle tracking module. The average residence time was 55 days in the inner bay, and the flushing time for Gamak Bay was about 44.8 days, according to the simulation. This means that it takes about 2 months for land and aquaculture generated particles to be transported out of Gamak Bay, which can lead to substances accumulating in the bay. These results show the relationships between the transport time scale and physical the properties of the embayment. The findings of this study will improves understanding of the water and material transport processes in Gamak Bay and will be important when assessing the potential impact of coastal development on water quality conditions.
        5.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        To find proper water quality management strategy for oxygen consumption organic matters in Jinhae bay, the physical process and net supply/decomposition in terms of COD was estimated by three-dimensional eco-hydrodynamic modeling. The estimation results of physical process in terms of COD showed that transportation of COD was dominant in loading area from land to sea, while accumulation of COD was dominant in middle~bottom level. In case of surface level, the net supply rate of COD was 0~60 mg/m2/day. The net decomposition rate of COD was 0~-0.05 mg/m2/day(-5~-10 m, in depth) to 2 level, and -0.05~-0.20 mg/m2/day(10 m ~) to bottom level. These results indicate that the biological decomposition and physical accumulation of COD are occurred for the most part of Jinhae Bay bottom. The variation of net supply or net decomposition rate of COD as reducing land based input loading is also remarkable. Therefore, it is important to consider both allochthonous and autochthonous oxygen demanding organic matters to improve the water quality of Jinhae Bay.
        6.
        2007.08 KCI 등재 서비스 종료(열람 제한)
        The three-dimensional eco-hydrodynamic model was applied to estimate the autochthonous COD caused by production of phytoplankton in Jinhae Bay. A residual current was simulated, using a hydrodynamic model, to have a sightly complicated pattern in the inner part of the bay, ranging from 0.001 to 5 cm/s. In the outer part of the bay, the simulated current flowed out to the south sea with a southward flow at a maximum of 25 cm/s. The results of the ecological model simulation of COD levels showed high concentrations, exceeding 4 mg/L, in the inner bay of Masan, an area of wastewater discharge, and lower levels, approaching less than 1 mg/L, closer to the outer part of the bay. The simulation results of Autochthonous COD by two methods using ecological modeling, showed high ratio over 70% of total COD. Therefore, it is more important to consider nutrients than organic matters in the region for control COD standard.
        7.
        2007.07 KCI 등재 서비스 종료(열람 제한)
        In Korean coastal areas, land reclamations are main development projects that should be based on environmental impact assessment(EIA), because those human interventions can change coastlines, damage tidal flats, and pollute adjacent areas to threat seafood safety and devaluate overall ecosystem service value. Existing procedures of the EIA for land reclamation projects were diagnosed and evaluated to enhance them. Problems were identified in the designation of survey areas, the consistency in survey sites and periods, the standardization of survey methods and reports, the confidence of survey results and the verification of predictions. Lack of integration was noticeable and could be improved by synthesizing different assessments from topography․geography, marine physics, marine chemistry and marine biology. We suggest that successful precautionary marine environment management requires readjusting the cost of EIA, recruiting experts in marine environment, constructing database and establishing specialized assessment system.
        8.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        We study on the dynamic interaction with a simulated physical-biological coupled model response to nutrient reduction scenario in Jinhae Bay. According to the low relative errors, high regression coefficients of COD and DIN, and realistic distribution in comparison to the observation, our coupled model could be applicable for assessing the marine ecosystem response to nutrient input reduction in Jinhae Bay. Due to the new construction and expansion of sewage treatment plant from our government, we reduce 50% nutrient inputs near Masan Bay and sewage treatment plant. COD achieves Level Ⅱ in Korea standard of the water quality from the middle of the Masan Bay to all around Jinhae Bay except the inner Masan Bay remaining at Level Ⅲ. When our experiment reduces 50% nutrient inputs near Masan Bay and Dukdong sewage treatment plant simultaneously, COD decreases to about 0.1-1.2 mg/L (128°30’~128°40’ E , 35°05’~35°11’ N). The COD from the middle of the Masan Bay to Jinhae Bay achieves Level Ⅱ.